skip to main content


Search for: All records

Award ID contains: 2103820

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Satellite‐based post‐tornado assessments have been widely used for the detection of tornado tracks, which heavily relies on the identification of vegetation changes through observations at visible and near‐infrared channels. During the deadly 10–11 December 2021 tornado outbreak, a series of violent tornadoes first touched down over northeastern Arkansas, an area dominated by cropland with rare vegetation coverage in winter. Through the examination of Moderate Resolution Imaging Spectroradiometer multi‐spectral observations, this study reveals significant scars on shortwave infrared channels over this region, but none are captured by visible and near‐infrared channels. The dominant soil type is aquert (one of vertisols), whose high clay content well preserves the severe changes in soil structure during the tornado passage, when the topmost soil layer was removed and underlying soil with higher moisture content was exposed to the air. This study suggests a quick post‐tornado assessment method over less vegetated area by using shortwave infrared channels.

     
    more » « less
  2. Abstract

    Aerosol‐cloud‐precipitation interactions represent one of the most significant uncertainties in climate simulation and projection. In particular, the impact of aerosols on precipitation is highly uncertain due to limited and conflicting observational evidence. A major challenge is to distinguish the effects of different types of aerosols on precipitation associated with deep convective clouds, which produces most of the precipitation in East Asia. Here, we use 9‐yr observations from multiple satellite‐borne sensors and find that the occurrent frequency of heavy rain increases while that of light rain decreases with the increase of aerosol optical depth (AOD) for dust and polluted continental aerosol types. For average hourly precipitation amount, elevated smoke tends to suppress deep convective precipitation, while dust and polluted continental aerosols enhance precipitation mainly through the invigoration of deep convection. The invigoration effect is more significant for clouds with higher cloud base temperature (CBT), while no significant invigoration is observed when CBT is <12°C. A great contrast is found for the response of average hourly precipitation amount to aerosols over ocean and land. While the prevailing continental aerosol types other than smoke increase precipitation, the marine aerosols first enhance and then inhibit precipitation with the increase of AOD. Moreover, our analysis indicates that the above‐mentioned enhancement and inhibition effects on precipitation are mainly caused by aerosols themselves, rather than by the covariation of meteorological factors. These observed relationships between different aerosol types and precipitation frequency and amount provide valuable constraints on the model forecasting of precipitation.

     
    more » « less