skip to main content


Title: In‐Situ V p / V s Reveals Fault‐Zone Material Variation at the Westernmost Gofar Transform Fault, East Pacific Rise
Abstract

Ocean transform faults often generate characteristic earthquakes that repeatedly rupture the same fault patches. The westernmost Gofar transform fault quasi‐periodically hosts ∼M6 earthquakes every ∼5 years, and microseismicity suggests that the fault is segmented into five distinct zones, including a rupture barrier zone that may have modulated the rupture of adjacentM6 earthquakes. However, the relationship between the systematic slip behavior of the Gofar fault and the fault material properties is still poorly known. Specifically, the role of pore fluids in regulating the slip of the Gofar fault is unclear. Here, we use differential travel times between nearby earthquakes to estimate the in‐situVp/Vsof the fault‐zone materials. We apply this technique to the dataset collected by an ocean‐bottom‐seismometer network deployed around the Gofar fault in 2008, which recorded abundant microearthquakes, and find a moderateVp/Vsof 1.75–1.80 in the rupture barrier zone and a lowVp/Vsof 1.61–1.69 in the down‐dip edge of the 2008M6 rupture zone. This lateral variation inVp/Vsmay be caused by both pore fluids and chemical alteration. We also find a 5%–10% increase inVp/Vsin the barrier zone during the 9 months before the mainshock. This increase may have been caused by fluid migrations or slip transients in the barrier zone.

 
more » « less
Award ID(s):
2143413 2022429
NSF-PAR ID:
10401673
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
128
Issue:
3
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Oceanic transform faults display a unique combination of seismic and aseismic slip behavior, including a large globally averaged seismic deficit, and the local occurrence of repeating magnitude (M)6earthquakes with abundant foreshocks and seismic swarms, as on the Gofar transform of the East Pacific Rise and the Blanco Ridge in the northeast Pacific Ocean. However, the underlying mechanisms that govern the partitioning between seismic and aseismic slip and their interaction remain unclear. Here we present a numerical modeling study of earthquake sequences and aseismic transient slip on oceanic transform faults. In the model, strong dilatancy strengthening, supported by seismic imaging that indicates enhanced fluid-filled porosity and possible hydrothermal circulation down to the brittle–ductile transition, effectively stabilizes along-strike seismic rupture propagation and results in rupture barriers where aseismic transients arise episodically. The modeled slow slip migrates along the barrier zones at speeds ∼10 to 600 m/h, spatiotemporally correlated with the observed migration of seismic swarms on the Gofar transform. Our model thus suggests the possible prevalence of episodic aseismic transients in M6rupture barrier zones that host active swarms on oceanic transform faults and provides candidates for future seafloor geodesy experiments to verify the relation between aseismic fault slip, earthquake swarms, and fault zone hydromechanical properties.

     
    more » « less
  2. Abstract

    Oceanic transform faults connect spreading centers and are imprinted with previous tectonic events. However, their tectonic interactions are not well understood due to limited observations. The Discovery transform fault system at 4°S, East Pacific Rise (EPR), represents a young transform system, offering a unique opportunity to study the interplay between faulting and other tectonic events at an early phases of an oceanic transform system. Discovery regularly hostsM5–6 characteristic earthquakes, and the seafloor north of Discovery includes a 35 km‐long rift zone that records a complex history of rifting, faulting and volcanism, suggesting that the transform faults likely interact with regional tectonic activity. We apply a machine‐learning enabled workflow to locate 21,391 earthquakes recorded during a 1‐year ocean bottom seismometer experiment in 2008. Our results indicate that seismicity on the western Discovery fault is separated into seven patches with distinct aseismic and seismic slip modes. Additionally, we observe a patch of off‐fault seismicity near where seafloor abyssal hills intersect the rift zone. This seismicity may have been caused by varying opening rates as spreading rate decreases from north to south in the rift zone. Our findings suggest that the Discovery system is still evolving, and that system equilibrium has not been reached between rifting and faulting. These results reflect the complex yet rarely observed interactions between fault slip, plate rotation, and rifting which are likely ubiquitous at oceanic transform systems.

     
    more » « less
  3. Abstract

    To better quantify how injection, prior seismicity, and fault properties control rupture growth and propagation of induced earthquakes, we perform a finite‐fault slip inversion on aMw4.0 earthquake that occurred in April 2015, the largest earthquake in an induced sequence near Guthrie, Oklahoma. The slip inversion reveals a rupture with slip patches that are anti‐correlated to the locations of prior seismicity. The prior seismicity driven by low pore pressure changes and static stress changes occurred on weaker portions of the fault, while theMw4.0 earthquake likely ruptured relatively stronger portions of the fault. To resolve if pore pressure changes or the initial underlying stress distribution and fault strength controlled the final slip distribution of the GuthrieMw4.0 earthquake, we compare strike‐slip events of similar magnitude from tectonically active regions and previously inactive regions. Earthquakes on reactivated faults exhibit different slip distributions than active regions, they have more prominent and well separated slip patches, a behavior often associated with faults of lower fault maturity. Pore pressure shows little effect on the distributions. These observations suggest that the initial underlying stress distribution and fault strength of reactivated faults in low deformation regions is the primary controlling factor of the slip distribution with pore pressure perturbations and earthquake interactions being secondary. Therefore, GuthrieMw4.0 earthquakes slip distribution was enhanced by pore‐pressure perturbations and earthquake interactions by creating an optimal stress state for its failure, but the slip distribution itself is controlled by its fault's initial stress and strength state.

     
    more » « less
  4. Abstract

    Earthquake clustering can be promoted by local, regional, and remote triggering. The interaction between faults by static and dynamic stress transfer has received much attention. However, the role of quasi‐static stress interaction mediated by viscoelastic flow is still poorly understood. Here, we investigate whether the tight synchronization of moment‐magnitude 6 earthquakes every about 6 years on distant asperities in the Gofar‐Discovery fault system of the East Pacific Rise may be caused by mechanical coupling within the lithosphere‐asthenosphere system. We build a three‐dimensional numerical model of seismic cycles in the framework of rate‐ and state‐dependent friction with a brittle layer overlaying a viscoelastic mantle with nonlinear rheology to simulate earthquake cycles on separate asperities. The brittle section of the West Gofar fault consists of two frictionally unstable 20 km‐long by 5 km‐wide asperities separated by a velocity‐strengthening barrier, consistent with seismic observations, allowing stress transfer by afterslip and viscoelastic relaxation. We find that viscoelastic stress transfer can promote the synchronization of earthquakes. Even if the asperities are separated by as far as 30 km, synchronization is still possible for a viscosity of the underlying mantle of 1017 Pa s, which can be attained by dislocation creep or transient creep during the postseismic period. Considering the similarities in tectonic and structural settings, viscoelastic stress transfer and earthquake synchronization may also occur at 15’20 (Mid‐Atlantic Ridge), George V (Southeast Indian Ridge), Menard and Heezen transform fault (Pacific‐Antarctic Ridge).

     
    more » « less
  5. Abstract

    The 12 November 2017Mw 7.3 Ezgeleh‐Sarpolzahab earthquake is the largest instrumentally recorded earthquake in the Zagros Simply Folded Belt by a factor of ∼10 in seismic moment. Exploiting local, regional, and teleseismic data and synthetic aperture radar interferometry imagery, we characterize the rupture, its aftershock sequence, background seismicity, and regional tectonics. The mainshock ruptured slowly (∼2 km/s), unilaterally southward, for ∼40 km along an oblique (dextral‐thrust) fault that dips ∼14°E beneath the northwestern Lurestan arc. Slip is confined to basement depths of ∼12–18 km, resolvably beneath the sedimentary cover which is ∼8 km thick in this area. The gentle dip angle and basement location allow for a broad slip area, explaining the large magnitude relative to earthquakes in the main Fars arc of the Zagros, where shallower, steeper faults are limited in rupture extent by weak sedimentary layers. Early aftershocks concentrate around the southern and western edges of the mainshock slip area and therefore cluster in the direction of rupture propagation, implying a contribution from dynamic triggering. A cluster of events ∼100 km to the south near Mandali (Iraq) reactivated the ∼50° dipping Zagros Foredeep Fault. The basement fault responsible for the Ezgeleh‐Sarpolzahab earthquake probably accounts for the ∼1 km elevation contrast between the Lurestan arc and the Kirkuk embayment but is distinct from sections of the Mountain Front Fault that define frontal escarpments elsewhere in the Zagros. It may be related to a seismic interface underlying the central and southern Lurestan arc, and a key concern is whether or not the more extensive regional structure is also seismogenic.

     
    more » « less