skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-dimensional patient acuity estimation with longitudinal EHR tokenization and flexible transformer networks
Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrated promising utility for patient-level predictions and health forecasting from longitudinal datasets. However, to our knowledge only few studies have explored transformers for predicting clinical outcomes from electronic health record (EHR) data, and in our estimation, none have adequately derived a health-specific tokenization scheme to fully capture the heterogeneity of EHR systems. In this study, we propose a dynamic method for tokenizing both discrete and continuous patient data, and present a transformer-based classifier utilizing a joint embedding space for integrating disparate temporal patient measurements. We demonstrate the feasibility of our clinical AI framework through multi-task ICU patient acuity estimation, where we simultaneously predict six mortality and readmission outcomes. Our longitudinal EHR tokenization and transformer modeling approaches resulted in more accurate predictions compared with baseline machine learning models, which suggest opportunities for future multimodal data integrations and algorithmic support tools using clinical transformer networks.  more » « less
Award ID(s):
1750192
PAR ID:
10401752
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Digital Health
Volume:
4
ISSN:
2673-253X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Large Transformers pretrained over clinical notes from Electronic Health Records (EHR) have afforded substantial gains in performance on predictive clinical tasks. The cost of training such models (and the necessity of data access to do so) coupled with their utility motivates parameter sharing, i.e., the release of pretrained models such as ClinicalBERT. While most efforts have used deidentified EHR, many researchers have access to large sets of sensitive, non-deidentified EHR with which they might train a BERT model (or similar). Would it be safe to release the weights of such a model if they did? In this work, we design a battery of approaches intended to recover Personal Health Information (PHI) from a trained BERT. Specifically, we attempt to recover patient names and conditions with which they are associated. We find that simple probing methods are not able to meaningfully extract sensitive information from BERT trained over the MIMIC-III corpus of EHR. However, more sophisticated “attacks” may succeed in doing so: To facilitate such research, we make our experimental setup and baseline probing models available at https://github.com/elehman16/exposing_patient_data_release. 
    more » « less
  2. Deep-learning-based clinical decision support using structured electronic health records (EHR) has been an active research area for predicting risks of mortality and diseases. Meanwhile, large amounts of narrative clinical notes provide complementary information, but are often not integrated into predictive models. In this paper, we provide a novel multimodal transformer to fuse clinical notes and structured EHR data for better prediction of in-hospital mortality. To improve interpretability, we propose an integrated gradients (IG) method to select important words in clinical notes and discover the critical structured EHR features with Shapley values. These important words and clinical features are visualized to assist with interpretation of the prediction outcomes. We also investigate the significance of domain adaptive pretraining and task adaptive fine-tuning on the Clinical BERT, which is used to learn the representations of clinical notes. Experiments demonstrated that our model outperforms other methods (AUCPR: 0.538, AUCROC: 0.877, F1:0.490). 
    more » « less
  3. Accurate prediction and monitoring of patient health in the intensive care unit can inform shared decisions regarding appropriateness of care delivery, risk-reduction strategies, and intensive care resource use. Traditionally, algorithmic solutions for patient outcome prediction rely solely on data available from electronic health records (EHR). In this pilot study, we explore the benefits of augmenting existing EHR data with novel measurements from wrist-worn activity sensors as part of a clinical environment known as the Intelligent ICU. We implemented temporal deep learning models based on two distinct sources of patient data: (1) routinely measured vital signs from electronic health records, and (2) activity data collected from wearable sensors. As a proxy for illness severity, our models predicted whether patients leaving the intensive care unit would be successfully or unsuccessfully discharged from the hospital. We overcome the challenge of small sample size in our prospective cohort by applying deep transfer learning using EHR data from a much larger cohort of traditional ICU patients. Our experiments quantify added utility of non-traditional measurements for predicting patient health, especially when applying a transfer learning procedure to small novel Intelligent ICU cohorts of critically ill patients. 
    more » « less
  4. Abstract Background Diabetic retinopathy (DR) is a leading cause of blindness in American adults. If detected, DR can be treated to prevent further damage causing blindness. There is an increasing interest in developing artificial intelligence (AI) technologies to help detect DR using electronic health records. The lesion-related information documented in fundus image reports is a valuable resource that could help diagnoses of DR in clinical decision support systems. However, most studies for AI-based DR diagnoses are mainly based on medical images; there is limited studies to explore the lesion-related information captured in the free text image reports. Methods In this study, we examined two state-of-the-art transformer-based natural language processing (NLP) models, including BERT and RoBERTa, compared them with a recurrent neural network implemented using Long short-term memory (LSTM) to extract DR-related concepts from clinical narratives. We identified four different categories of DR-related clinical concepts including lesions, eye parts, laterality, and severity, developed annotation guidelines, annotated a DR-corpus of 536 image reports, and developed transformer-based NLP models for clinical concept extraction and relation extraction. We also examined the relation extraction under two settings including ‘gold-standard’ setting—where gold-standard concepts were used–and end-to-end setting. Results For concept extraction, the BERT model pretrained with the MIMIC III dataset achieve the best performance (0.9503 and 0.9645 for strict/lenient evaluation). For relation extraction, BERT model pretrained using general English text achieved the best strict/lenient F1-score of 0.9316. The end-to-end system, BERT_general_e2e, achieved the best strict/lenient F1-score of 0.8578 and 0.8881, respectively. Another end-to-end system based on the RoBERTa architecture, RoBERTa_general_e2e, also achieved the same performance as BERT_general_e2e in strict scores. Conclusions This study demonstrated the efficiency of transformer-based NLP models for clinical concept extraction and relation extraction. Our results show that it’s necessary to pretrain transformer models using clinical text to optimize the performance for clinical concept extraction. Whereas, for relation extraction, transformers pretrained using general English text perform better. 
    more » « less
  5. Deep neural networks, including the Transformer architecture, have achieved remarkable performance in various time series tasks. However, their effectiveness in handling clinical time series data is hindered by specific challenges: 1) Sparse event sequences collected asynchronously with multivariate time series, and 2) Limited availability of labeled data. To address these challenges, we propose Our code is available at https://github.com/SigmaTsing/TransEHR.git . , a self-supervised Transformer model designed to encode multi-sourced asynchronous sequential data, such as structured Electronic Health Records (EHRs), efficiently. We introduce three pretext tasks for pre-training the Transformer model, utilizing large amounts of unlabeled structured EHR data, followed by fine-tuning on downstream prediction tasks using the limited labeled data. Through extensive experiments on three real-world health datasets, we demonstrate that our model achieves state-of-the-art performance on benchmark clinical tasks, including in-hospital mortality classification, phenotyping, and length-of-stay prediction. Our findings highlight the efficacy of in effectively addressing the challenges associated with clinical time series data, thus contributing to advancements in healthcare analytics. 
    more » « less