We present a stellar dynamical mass measurement of a newly detected supermassive black hole (SMBH) at the center of the fast-rotating, massive elliptical galaxy NGC 2693 as part of the MASSIVE survey. We combine high signal-to-noise ratio integral field spectroscopy (IFS) from the Gemini Multi-Object Spectrograph with wide-field data from the Mitchell Spectrograph at McDonald Observatory to extract and model stellar kinematics of NGC 2693 from the central ∼150 pc out to ∼2.5 effective radii. Observations from Hubble Space Telescope WFC3 are used to determine the stellar light distribution. We perform fully triaxial Schwarzschild orbit modeling using the latest TriOS code and a Bayesian search in 6D galaxy model parameter space to determine NGC 2693's SMBH mass (
The three-dimensional intrinsic shape of a galaxy and the mass of the central supermassive black hole provide key insight into the galaxy’s growth history over cosmic time. Standard assumptions of a spherical or axisymmetric shape can be simplistic and can bias the black hole mass inferred from the motions of stars within a galaxy. Here, we present spatially resolved stellar kinematics of M87 over a two-dimensional 250″ × 300″ contiguous field covering a radial range of 50 pc–12 kpc from integral-field spectroscopic observations at the Keck II Telescope. From about 5 kpc and outward, we detect a prominent 25 km s−1rotational pattern, in which the kinematic axis (connecting the maximal receding and approaching velocities) is 40° misaligned with the photometric major axis of M87. The rotational amplitude and misalignment angle both decrease in the inner 5 kpc. Such misaligned and twisted velocity fields are a hallmark of triaxiality, indicating that M87 is not an axisymmetrically shaped galaxy. Triaxial Schwarzschild orbit modeling with more than 4000 observational constraints enabled us to determine simultaneously the shape and mass parameters. The models incorporate a radially declining profile for the stellar mass-to-light ratio suggested by stellar population studies. We find that M87 is strongly triaxial, with ratios of
- PAR ID:
- 10401846
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 945
- Issue:
- 2
- ISSN:
- 2041-8205
- Format(s):
- Medium: X Size: Article No. L35
- Size(s):
- Article No. L35
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract M BH), stellar mass-to-light ratio, dark matter content, and intrinsic shape. We find and a triaxial intrinsic shape with axis ratiosp =b /a = 0.902 ± 0.009 and , triaxiality parameterT = 0.39 ± 0.04. In comparison, the best-fit orbit model in the axisymmetric limit and (cylindrical) Jeans anisotropic model of NGC 2693 prefer and , respectively. Neither model can account for the non-axisymmetric stellar velocity features present in the IFS data. -
Abstract We measure the correlation between black hole mass
M BHand host stellar massM *for a sample of 38 broad-line quasars at 0.2 ≲z ≲ 0.8 (median redshiftz med= 0.5). The black hole masses are derived from a dedicated reverberation mapping program for distant quasars, and the stellar masses are derived from two-band optical+IR Hubble Space Telescope imaging. Most of these quasars are well centered within ≲1 kpc from the host galaxy centroid, with only a few cases in merging/disturbed systems showing larger spatial offsets. Our sample spans two orders of magnitude in stellar mass (∼109–1011M ⊙) and black hole mass (∼107–109M ⊙) and reveals a significant correlation between the two quantities. We find a best-fit intrinsic (i.e., selection effects corrected)M BH–M *,hostrelation of , with an intrinsic scatter of dex. Decomposing our quasar hosts into bulges and disks, there is a similarM BH–M *,bulgerelation with slightly larger scatter, likely caused by systematic uncertainties in the bulge–disk decomposition. TheM BH–M *,hostrelation atz med= 0.5 is similar to that in local quiescent galaxies, with negligible evolution over the redshift range probed by our sample. With direct black hole masses from reverberation mapping and the large dynamical range of the sample, selection biases do not appear to affect our conclusions significantly. Our results, along with other samples in the literature, suggest that the locally measured black hole mass–host stellar mass relation is already in place atz ∼ 1. -
Abstract Dust-obscured galaxies (DOGs) containing central supermassive black holes (SMBHs) that are rapidly accreting (i.e., having high Eddington ratios,
λ Edd) may represent a key phase closest to the peak of both the black hole and galaxy growth in the coevolution framework for SMBHs and galaxies. In this work, we present a 68 ks XMM-Newton observation of the high-λ EddDOG J1324+4501 atz ∼ 0.8, which was initially observed by Chandra. We analyze the XMM-Newton spectra jointly with archival Chandra spectra. In performing a detailed X-ray spectral analysis, we find that the source is intrinsically X-ray luminous with /erg and heavily obscured with . We further utilize UV-to-IR archival photometry to measure and fit the source’s spectral energy distribution to estimate its host-galaxy properties. We present a supplementary comparison sample of 21 X-ray luminous DOGs from the XMM-SERVS survey with sufficient (>200) 0.5–10 keV counts to perform a similarly detailed X-ray spectral analysis. Of the X-ray luminous DOGs in our sample, we find that J1324+4501 is the most remarkable, possessing one of the highest X-ray luminosities, column densities, and star formation rates. We demonstrate that J1324+4501 is in an extreme evolutionary stage where SMBH accretion and galaxy growth are at their peaks. -
Abstract We conduct a systematic tidal disruption event (TDE) demographics analysis using the largest sample of optically selected TDEs. A flux-limited, spectroscopically complete sample of 33 TDEs is constructed using the Zwicky Transient Facility over 3 yr (from 2018 October to 2021 September). We infer the black hole (BH) mass (
M BH) with host galaxy scaling relations, showing that the sampleM BHranges from 105.1M ⊙to 108.2M ⊙. We developed a survey efficiency corrected maximum volume method to infer the rates. The rest-frameg -band luminosity function can be well described by a broken power law of , withL bk= 1043.1erg s−1. In the BH mass regime of 105.3≲ (M BH/M ⊙) ≲ 107.3, the TDE mass function follows , which favors a flat local BH mass function ( ). We confirm the significant rate suppression at the high-mass end (M BH≳ 107.5M ⊙), which is consistent with theoretical predictions considering direct capture of hydrogen-burning stars by the event horizon. At a host galaxy mass ofM gal∼ 1010M ⊙, the average optical TDE rate is ≈3.2 × 10−5galaxy−1yr−1. We constrain the optical TDE rate to be [3.7, 7.4, and 1.6] × 10−5galaxy−1yr−1in galaxies with red, green, and blue colors. -
Abstract We present a reanalysis of reverberation mapping data from 2005 for the Seyfert galaxy NGC 4151, supplemented with additional data from the literature to constrain the continuum variations over a significantly longer baseline than the original monitoring program. Modeling of the continuum light curve and the velocity-resolved variations across the H
β emission line constrains the geometry and kinematics of the broad line region (BLR). The BLR is well described by a very thick disk with similar opening angle (θ o ≈ 57°) and inclination angle (θ i ≈ 58°), suggesting that our sight line toward the innermost central engine skims just above the surface of the BLR. The inclination is consistent with constraints from geometric modeling of the narrow-line region, and the similarity between the inclination and opening angles is intriguing given previous studies of NGC 4151 that suggest BLR gas has been observed temporarily eclipsing the X-ray source. The BLR kinematics are dominated by eccentric bound orbits, with ∼10% of the orbits preferring near-circular motions. With the BLR geometry and kinematics constrained, the models provide an independent and direct black hole mass measurement of orM ⊙, which is in good agreement with mass measurements from stellar dynamical modeling and gas dynamical modeling. NGC 4151 is one of the few nearby broad-lined Seyferts where the black hole mass may be measured via multiple independent techniques, and it provides an important test case for investigating potential systematics that could affect the black hole mass scales used in the local universe and for high-redshift quasars.