skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Incompressible active phases at an interface. Part 1. Formulation and axisymmetric odd flows
Inspired by the recent realization of a two-dimensional (2-D) chiral fluid as an active monolayer droplet moving atop a 3-D Stokesian fluid, we formulate mathematically its free-boundary dynamics. The surface droplet is described as a general 2-D linear, incompressible and isotropic fluid, having a viscous shear stress, an active chiral driving stress and a Hall stress allowed by the lack of time-reversal symmetry. The droplet interacts with itself through its driven internal mechanics and by driving flows in the underlying 3-D Stokes phase. We pose the dynamics as the solution to a singular integral–differential equation, over the droplet surface, using the mapping from surface stress to surface velocity for the 3-D Stokes equations. Specializing to the case of axisymmetric droplets, exact representations for the chiral surface flow are given in terms of solutions to a singular integral equation, solved using both analytical and numerical techniques. For a disc-shaped monolayer, we additionally employ a semi-analytical solution that hinges on an orthogonal basis of Bessel functions and allows for efficient computation of the monolayer velocity field, which ranges from a nearly solid-body rotation to a unidirectional edge current, depending on the subphase depth and the Saffman–Delbrück length. Except in the near-wall limit, these solutions have divergent surface shear stresses at droplet boundaries, a signature of systems with codimension-one domains embedded in a 3-D medium. We further investigate the effect of a Hall viscosity, which couples radial and transverse surface velocity components, on the dynamics of a closing cavity. Hall stresses are seen to drive inward radial motion, even in the absence of edge tension.  more » « less
Award ID(s):
2011854 2004469
PAR ID:
10400882
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
951
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract This study investigates the dynamics of velocity shear and Reynolds stress in the ocean surface boundary layer for idealized misaligned wind and wave fields using a large-eddy simulation (LES) model based on the Craik–Leibovich equations, which captures Langmuir turbulence (LT). To focus on the role of LT, the LES experiments omit the Coriolis force, which obscures a stress–current-relation analysis. Furthermore, a vertically uniform body force is imposed so that the volume-averaged Eulerian flow does not accelerate but is steady. All simulations are first spun-up without wind-wave misalignment to reach a fully developed stationary turbulent state. Then, a crosswind Stokes drift profile is abruptly imposed, which drives crosswind stresses and associated crosswind currents without generating volume-averaged crosswind currents. The flow evolves to a new stationary state, in which the crosswind Reynolds stress vanishes while the crosswind Eulerian shear and Stokes drift shear are still present, yielding a misalignment between Reynolds stress and Lagrangian shear (sum of Eulerian current and Stokes drift). A Reynolds stress budgets analysis reveals a balance between stress production and velocity–pressure gradient terms (VPG) that encloses crosswind Eulerian shear, demonstrating a complex relation between shear and stress. In addition, the misalignment between Reynolds stress and Eulerian shear generates a horizontal turbulent momentum flux (due to correlations of along-wind and crosswind turbulent velocities) that can be important in producing Reynolds stress (due to correlations of horizontal and vertical turbulent velocities). Thus, details of the Reynolds stress production by Eulerian and Stokes drift shear may be critical for driving upper-ocean currents and for accurate turbulence parameterizations in misaligned wind-wave conditions. 
    more » « less
  2. We propose a novel integral model describing the motion of both flexible and rigid slender fibers in viscous flow and develop a numerical method for simulating dynamics of curved rigid fibers. The model is derived from nonlocal slender body theory (SBT), which approximates flow near the fiber using singular solutions of the Stokes equations integrated along the fiber centerline. In contrast to other models based on (singular) SBT, our model yields a smooth integral kernel which incorporates the (possibly varying) fiber radius naturally. The integral operator is provably negative definite in a nonphysical idealized geometry, as expected from the partial differential equation theory. This is numerically verified in physically relevant geometries. We discuss the convergence and stability of a numerical method for solving the integral equation. The accuracy of the model and method is verified against known models for ellipsoids. Finally, we develop an algorithm for computing dynamics of rigid fibers with complex geometries in the case where the fiber density is much greater than that of the fluid, for example, in turbulent gas-fiber suspensions. 
    more » « less
  3. Abstract The equation for a traveling wave on the boundary of a two‐dimensional droplet of an ideal fluid is derived by using the conformal variables technique for free surface waves. The free surface is subject only to the force of surface tension and the fluid flow is assumed to be potential. We use the canonical Hamiltonian variables discovered and map the lower complex plane to the interior of a fluid droplet conformally. The equations in this form have been originally discovered for infinitely deep water and later adapted to a bounded fluid domain.The new class of solutions satisfies a pseudodifferential equation similar to the Babenko equation for the Stokes wave. We illustrate with numerical solutions of the time‐dependent equations and observe the linear limit of traveling waves in this geometry. 
    more » « less
  4. We analyse the pressure-driven flow of the Oldroyd-B fluid in slowly varying arbitrarily shaped, narrow channels and present a theoretical framework for calculating the relationship between the flow rate $$q$$ and pressure drop $$\Delta p$$ . We first identify the characteristic scales and dimensionless parameters governing the flow in the lubrication limit. Employing a perturbation expansion in powers of the Deborah number ( $De$ ), we provide analytical expressions for the velocity, stress and the $$q$$ – $$\Delta p$$ relation in the weakly viscoelastic limit up to $O(De^2)$ . Furthermore, we exploit the reciprocal theorem derived by Boyko $$\&$$ Stone ( Phys. Rev. Fluids , vol. 6, 2021, L081301) to obtain the $$q$$ – $$\Delta p$$ relation at the next order, $O(De^3)$ , using only the velocity and stress fields at the previous orders. We validate our analytical results with two-dimensional numerical simulations in the case of a hyperbolic, symmetric contracting channel and find excellent agreement. While the velocity remains approximately Newtonian in the weakly viscoelastic limit (i.e. the theorem of Tanner and Pipkin), we reveal that the pressure drop strongly depends on the viscoelastic effects and decreases with $De$ . We elucidate the relative importance of different terms in the momentum equation contributing to the pressure drop along the symmetry line and identify that a pressure drop reduction for narrow contracting geometries is primarily due to gradients in the viscoelastic shear stresses. We further show that, although for narrow geometries the viscoelastic axial stresses are negligible along the symmetry line, they are comparable or larger than shear stresses in the rest of the domain. 
    more » « less
  5. Abstract Image-based computational fluid dynamics (CFD) has become a new capability for determining wall stresses of pulsatile flows. However, a computational platform that directly connects image information to pulsatile wall stresses is lacking. Prevailing methods rely on manual crafting of a hodgepodge of multidisciplinary software packages, which is usually laborious and error-prone. We present a new computational platform, to compute wall stresses in image-based pulsatile flows using the volumetric lattice Boltzmann method (VLBM). The novelty includes: (1) a unique image processing to extract flow domain and local wall normality, (2) a seamless connection between image extraction and VLBM, (3) an en-route calculation of strain-rate tensor, and (4) GPU acceleration (not included here). We first generalize the streaming operation in the VLBM and then conduct application studies to demonstrate its reliability and applicability. A benchmark study is for laminar and turbulent pulsatile flows in an image-based pipe (Reynolds number: 10 to 5000). The computed pulsatile velocity and shear stress are in good agreements with Womersley's analytical solutions for laminar pulsatile flows and concurrent laboratory measurements for turbulent pulsatile flows. An application study is to quantify the pulsatile hemodynamics in image-based human vertebral and carotid arteries including velocity vector, pressure, and wall-shear stress. The computed velocity vector fields are in reasonably well agreement with MRA (magnetic resonance angiography) measured ones. This computational platform is good for image-based CFD with medical applications and pore-scale porous media flows in various natural and engineering systems. 
    more » « less