 Award ID(s):
 2129816
 NSFPAR ID:
 10401869
 Date Published:
 Journal Name:
 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 710, 2022
 Page Range / eLocation ID:
 1147 to 1158
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

null (Ed.)We consider the classical Minimum Balanced Cut problem: given a graph $G$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almostlinear time} approximation algorithm for this problem. Specifically, our algorithm, given an $n$vertex $m$edge graph $G$ and any parameter $1\leq r\leq O(\log n)$, computes a $(\log m)^{r^2}$approximation for Minimum Balanced Cut on $G$, in time $O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$. In particular, we obtain a $(\log m)^{1/\epsilon}$approximation in time $m^{1+O(1/\sqrt{\epsilon})}$ for any constant $\epsilon$, and a $(\log m)^{f(m)}$approximation in time $m^{1+o(1)}$, for any slowly growing function $m$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the LowestConductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $G$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worstcase update time on an $n$vertex graph is $n^{o(1)}$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $n$ factors, those of known randomized algorithms. The implications include almostlinear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs.more » « less

null (Ed.)We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sublinear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fullydynamic algorithm that approximates allpair maximumflows/minimumcuts up to a nearly logarithmic factor in $\tilde{O}(n^{2/3})$ amortized time against an oblivious adversary, and $\tilde{O}(m^{3/4})$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$approximate shortest path in $n^{o(1)}$ time per operation, as well as fully dynamic approximate allpair shortest path and transshipment in $\tilde{O}(n^{2/3+o(1)})$ amortized time per operation. (3) A fullydynamic algorithm that approximates allpair effective resistance up to an $(1+\eps)$ factor in $\tilde{O}(n^{2/3+o(1)} \epsilon^{O(1)})$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as jtrees) and approximately captures the cutflow and metric structure of the graph. The $O(1)$approximation guarantee of (2) is by adapting the distance oracles by [ThorupZwick JACM `05]. Result (3) is obtained by invoking the randomwalk based spectral vertex sparsifier by [Durfee et al. STOC `19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy.more » « less

null (Ed.)The problem of sparsifying a graph or a hypergraph while approximately preserving its cut structure has been extensively studied and has many applications. In a seminal work, Benczúr and Karger (1996) showed that given any nvertex undirected weighted graph G and a parameter ε ∈ (0,1), there is a nearlinear time algorithm that outputs a weighted subgraph G' of G of size Õ(n/ε²) such that the weight of every cut in G is preserved to within a (1 ± ε)factor in G'. The graph G' is referred to as a (1 ± ε)approximate cut sparsifier of G. Subsequent recent work has obtained a similar result for the more general problem of hypergraph cut sparsifiers. However, all known sparsification algorithms require Ω(n + m) time where n denotes the number of vertices and m denotes the number of hyperedges in the hypergraph. Since m can be exponentially large in n, a natural question is if it is possible to create a hypergraph cut sparsifier in time polynomial in n, independent of the number of edges. We resolve this question in the affirmative, giving the first sublinear time algorithm for this problem, given appropriate query access to the hypergraph. Specifically, we design an algorithm that constructs a (1 ± ε)approximate cut sparsifier of a hypergraph H(V,E) in polynomial time in n, independent of the number of hyperedges, when given access to the hypergraph using the following two queries: 1) given any cut (S, ̄S), return the size δ_E(S) (cut value queries); and 2) given any cut (S, ̄S), return a uniformly at random edge crossing the cut (cut edge sample queries). Our algorithm outputs a sparsifier with Õ(n/ε²) edges, which is essentially optimal. We then extend our results to show that cut value and cut edge sample queries can also be used to construct hypergraph spectral sparsifiers in poly(n) time, independent of the number of hyperedges. We complement the algorithmic results above by showing that any algorithm that has access to only one of the above two types of queries can not give a hypergraph cut sparsifier in time that is polynomial in n. Finally, we show that our algorithmic results also hold if we replace the cut edge sample queries with a pair neighbor sample query that for any pair of vertices, returns a random edge incident on them. In contrast, we show that having access only to cut value queries and queries that return a random edge incident on a given single vertex, is not sufficient.more » « less

We give an $\widetilde{O}(\sqrt{n})$space singlepass 0.483approximation streaming algorithm for estimating the maximum directed cut size (MaxDICUT) in a directed graph on n vertices. This improves over an $O(\log n)$space $4 / 9 < 0.45$ approximation algorithm due to Chou, Golovnev, and Velusamy (FOCS 2020), which was known to be optimal for $o(\sqrt{n})$space algorithms. MaxDICUT is a special case of a constraint satisfaction problem (CSP). In this broader context, we give the first CSP for which algorithms with $\widetilde{O}(\sqrt{n})$ space can provably outperform $o(\sqrt{n})$ space algorithms. The key technical contribution of our work is development of the notions of a firstorder snapshot of a (directed) graph and of estimates of such snapshots. These snapshots can be used to simulate certain (nonstreaming) MaxDICUT algorithms, including the “oblivious” algorithms introduced by Feige and Jozeph (Algorithmica, 2015), who showed that one such algorithm Previous work of the authors (SODA 2023) studied the restricted case of boundeddegree graphs, and observed that in this setting, it is straightforward to estimate the snapshot with $\ell_{1}$ errors and this suffices to simulate oblivious algorithms. But for unboundeddegree graphs, even defining an achievable and sufficient notion of estimation is subtle. We describe a new notion of snapshot estimation and prove its sufficiency using careful smoothing techniques, and then develop an algorithm which sketches such an estimate via a delicate process of intertwined vertex and edgesubsampling. Prior to our work, the only streaming algorithms for any CSP on general instances were based on generalizations of the $O(\log n)$space algorithm for MaxDICUT, and can roughly be characterized as based on “zeroth” order snapshots. Our work thus opens the possibility of a new class of algorithms for approximating CSPs by demonstrating that more sophisticated snapshots can outperform cruder ones in the case of MaxDICUT.more » « less

Abstract We consider the problem of covering multiple submodular constraints. Given a finite ground set
N , a weight function ,$$w: N \rightarrow \mathbb {R}_+$$ $w:N\to {R}_{+}$r monotone submodular functions over$$f_1,f_2,\ldots ,f_r$$ ${f}_{1},{f}_{2},\dots ,{f}_{r}$N and requirements the goal is to find a minimum weight subset$$k_1,k_2,\ldots ,k_r$$ ${k}_{1},{k}_{2},\dots ,{k}_{r}$ such that$$S \subseteq N$$ $S\subseteq N$ for$$f_i(S) \ge k_i$$ ${f}_{i}\left(S\right)\ge {k}_{i}$ . We refer to this problem as$$1 \le i \le r$$ $1\le i\le r$MultiSubmodCover and it was recently considered by HarPeled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260 HarPeled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ $r=1$MultiSubmodCover generalizes the wellknown Submodular Set Cover problem (SubmodSC ), and it can also be easily reduced toSubmodSC . A simple greedy algorithm gives an approximation where$$O(\log (kr))$$ $O(log(kr\left)\right)$ and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm for$$k = \sum _i k_i$$ $k={\sum}_{i}{k}_{i}$MultiSubmodCover that covers each constraint to within a factor of while incurring an approximation of$$(11/e\varepsilon )$$ $(11/e\epsilon )$ in the cost. Second, we consider the special case when each$$O(\frac{1}{\epsilon }\log r)$$ $O(\frac{1}{\u03f5}logr)$ is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover ($$f_i$$ ${f}_{i}$PartialSC ), covering integer programs (CIPs ) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the highlevel model and the lens of submodularity in addressing this class of covering problems.