skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamic Approximate Multiplicatively-Weighted Nearest Neighbors
We describe a dynamic data structure for approximate nearest neighbor (ANN) queries with respect to multiplicatively weighted distances with additive offsets. Queries take polylogarithmic time, while the cost of updates is amortized polylogarithmic. The data structure requires near-linear space and construction time. The approach works not only for the Euclidean norm, but for other norms in ℝ^d, for any fixed d. We employ our ANN data structure to construct a faster dynamic structure for approximate SINR queries, ensuring polylogarithmic query and polylogarithmic amortized update for the case of non-uniform power transmitters, thus closing a gap in previous state of the art. To obtain the latter result, we needed a data structure for dynamic approximate halfplane range counting in the plane. Since we could not find such a data structure in the literature, we also show how to dynamize one of the known static data structures.  more » « less
Award ID(s):
2008551 1540656
PAR ID:
10401871
Author(s) / Creator(s):
;
Editor(s):
Czumaj, Artur; Xin, Qin
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
227
ISSN:
1868-8969
ISBN:
978-3-95977-236-5
Page Range / eLocation ID:
11:1-11:14
Subject(s) / Keyword(s):
Nearest neighbors Approximate nearest neighbors Weighted nearest neighbors Nearest neighbor queries SINR queries Dynamic data structures Theory of computation → Computational geometry Theory of computation → Design and analysis of algorithms
Format(s):
Medium: X Size: 14 pages; 802361 bytes Other: application/pdf
Size(s):
14 pages 802361 bytes
Location:
18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022), Tórshavn, Faroe Islands
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    A fundamental question is whether one can maintain a maximum independent set (MIS) in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain O(1+ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions. Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al. (ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu (SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010), and quickly yields a "replacement" disk (if any) when a disk in one of our independent sets is deleted. 
    more » « less
  2. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    We present the first fully dynamic connectivity data structures for geometric intersection graphs achieving constant query time and sublinear amortized update time for many classes of geometric objects in 2D . Our data structures can answer connectivity queries between two objects, as well as "global" connectivity queries (e.g., deciding whether the entire graph is connected). Previously, the data structure by Afshani and Chan (ESA'06) achieved such bounds only in the special case of axis-aligned line segments or rectangles but did not work for arbitrary line segments or disks, whereas the data structures by Chan, Pătraşcu, and Roditty (FOCS'08) worked for more general classes of geometric objects but required n^{Ω(1)} query time and could not handle global connectivity queries. Specifically, we obtain new data structures with O(1) query time and amortized update time near n^{4/5}, n^{7/8}, and n^{20/21} for axis-aligned line segments, disks, and arbitrary line segments respectively. Besides greatly reducing the query time, our data structures also improve the previous update times for axis-aligned line segments by Afshani and Chan (from near n^{10/11} to n^{4/5}) and for disks by Chan, Pătraşcu, and Roditty (from near n^{20/21} to n^{7/8}). 
    more » « less
  3. null (Ed.)
    We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in $$\tilde{O}(n^{2/3})$$ amortized time against an oblivious adversary, and $$\tilde{O}(m^{3/4})$$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$-approximate shortest path in $$n^{o(1)}$$ time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in $$\tilde{O}(n^{2/3+o(1)})$$ amortized time per operation. (3) A fully-dynamic algorithm that approximates all-pair effective resistance up to an $$(1+\eps)$$ factor in $$\tilde{O}(n^{2/3+o(1)} \epsilon^{-O(1)})$$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The $O(1)$-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM `05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC `19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy. 
    more » « less
  4. We study the fully dynamic All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. Given an n-vertex graph G with non-negative edge lengths, that undergoes an online sequence of edge insertions and deletions, the goal is to support approximate distance queries and shortest-path queries. We provide a deterministic algorithm for this problem, that, for a given precision parameter є, achieves approximation factor (loglogn)2O(1/є3), and has amortized update time O(nєlogL) per operation, where L is the ratio of longest to shortest edge length. Query time for distance-query is O(2O(1/є)· logn· loglogL), and query time for shortest-path query is O(|E(P)|+2O(1/є)· logn· loglogL), where P is the path that the algorithm returns. To the best of our knowledge, even allowing any o(n)-approximation factor, no adaptive-update algorithms with better than Θ(m) amortized update time and better than Θ(n) query time were known prior to this work. We also note that our guarantees are stronger than the best current guarantees for APSP in decremental graphs in the adaptive-adversary setting. In order to obtain these results, we consider an intermediate problem, called Recursive Dynamic Neighborhood Cover (RecDynNC), that was formally introduced in [Chuzhoy, STOC ’21]. At a high level, given an undirected edge-weighted graph G undergoing an online sequence of edge deletions, together with a distance parameter D, the goal is to maintain a sparse D-neighborhood cover of G, with some additional technical requirements. Our main technical contribution is twofolds. First, we provide a black-box reduction from APSP in fully dynamic graphs to the RecDynNC problem. Second, we provide a new deterministic algorithm for the RecDynNC problem, that, for a given precision parameter є, achieves approximation factor (loglogm)2O(1/є2), with total update time O(m1+є), where m is the total number of edges ever present in G. This improves the previous algorithm of [Chuzhoy, STOC ’21], that achieved approximation factor (logm)2O(1/є) with similar total update time. Combining these two results immediately leads to the deterministic algorithm for fully-dynamic APSP with the guarantees stated above. 
    more » « less
  5. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in {ℝ}². Let S be a set of n pairwise-disjoint segments in {ℝ}², and let r > 0 be a parameter. We define the segment proximity graph of S to be G_r(S) := (S,E), where E = {(e₁,e₂) ∣ dist(e₁,e₂) ≤ r} and dist (e₁,e₂) = min_{(p,q) ∈ e₁× e₂} ‖p-q‖ is the Euclidean distance between e₁ and e₂. We define the weight of an edge (e₁,e₂) ∈ E to be dist(e₁,e₂). We first present a simple grid-based O(nlog² n)-time algorithm for computing a BFS tree of G_r(S). We apply it to obtain an O^*(n^{6/5}) + O(nlog²nlogΔ)-time algorithm for the so-called reverse shortest path problem, in which we want to find the smallest value r^* for which G_{r^*}(S) contains a path of some specified length between two designated start and target segments (where the O^*(⋅) notation hides polylogarithmic factors). Here Δ = max_{e ≠ e' ∈ S} dist(e,e')/min_{e ≠ e' ∈ S} dist(e,e') is the spread of S. Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S, the segment of S closest to e can be computed in O(log⁵ n) amortized time. The amortized update time is also O(log⁵ n). We note that if the segments in S∪Q are allowed to intersect then the known lower bounds on halfplane range searching suggest that a sequence of n updates and queries may take at least close to Ω(n^{4/3}) time. One thus has to strongly rely on the non-intersecting property of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each. Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that a DFS tree (or forest) of G_r(S) can be computed in O^*(n) time. We also obtain an O^*(n)-time algorithm for constructing a minimum spanning tree of G_r(S). Finally, we present an O^*(n^{4/3})-time algorithm for computing a single-source shortest-path tree in G_r(S). This is the only result that does not exploit the disjointness of the input segments. 
    more » « less