In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. Given the experience from the first year’s operation and assessment, it was noted that the extant teacher self-efficacy surveys need to be further improved according to the specific needs of RET site. As such, an updated set of assessment tools was developed to evaluate the impact of RET site on high school teacher participants. In particular, a new teacher self-efficacy survey was created from synthesizing multiple sources including Bandura’s Instrument Teacher Self-Efficacy Scale, Collective Teacher Beliefs, and Teachers’ Sense of Efficacy Scale (Ohio State Teacher Efficacy Scale). Besides the new self-efficacy survey, more specific questions were added to pre- and post-summer self-reported questionnaires to better understand the teachers’ perception and receptance of the summer experience. Interviews were conducted individually instead of using a focus group. This allows the interviewee to be more vocal during the interview, allowing more in-depth understanding of their perception for future improvement. The new assessment tools were applied to the second cohort of 12 teachers in summer 2022. The assessment results show that the assessment tools were able to effectively capture teachers’ change in perception and evaluate the affective impact of the RET site. In the future, the tools may be improved and used in similar teacher professional development activities.
more »
« less
First Year Experience from RET Site: High School Teacher Experience in Engineering Design and Manufacturing
In 2019, University of Houston (UH) at Houston, Texas was awarded an NSF Research Experience for Teachers (RET) site grant titled “RET Site: High School Teacher Experience in Engineering Design and Manufacturing.” The goal of the project is to host 12 high school teachers each summer to participate in engineering design and manufacturing research and then convert their experience into high school curriculum. In summer of 2021, the first cohort of 12 teachers from Region 4 of Southeast Texas participated in the RET program at UH College of Technology (COT). This six-week program, open to local high school STEM teachers in Texas, sought to advance educators’ knowledge of concepts in design and manufacturing as a means of enriching high school curriculums and meeting foundational standards set by 2013’s Texas House Bill 5. These standards require enhanced STEM contents in high school curricula as a prerequisite for graduation, detailed in the Texas Essential Knowledge and Skills standard. Due to the pandemic situation, about 50% of the activities are online and the rest are face to face. About 40% of the time, teachers attended online workshops to enhance their knowledge of topics in engineering design and manufacturing before embarking on applicable research projects in the labs. Six UH COT engineering technology professors each led workshops in a week. The four tenure-track engineering mentors, assisted by student research assistants, each mentored three teachers on projects ranging from additive manufacturing to thermal/fluids, materials, and energy. The group also participated in field trips to local companies including ARC Specialties, Master Flo, Re:3D, and Forged Components. They worked with two instructional track engineering technology professors and one professor of education on applying their learnings to lesson plan design. Participants also met weekly for online Brown Bag teacher seminars to share their experiences and discuss curricula, which was organized by the RET master teacher. On the final day of the program, the teachers presented their curriculum prototype for the fall semester to the group and received completion certificates. The program assessment was led by the assessment specialist, Director of Assessment and Accreditation at UH COT. Teacher participants found the research experience with their mentors beneficial not only to them, but also to their students according to our findings from interviews. The mentors will visit their mentees’ classrooms to see the lesson plans being implemented. In the spring of 2022, the teachers will present their refined curricula at a RET symposium to be organized at UH and submit their standards-aligned plans to teachengineering.org for other K-12 educators to access.
more »
« less
- Award ID(s):
- 1855147
- PAR ID:
- 10401880
- Date Published:
- Journal Name:
- 2022 ASEE Annual Conference & Exposition
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper reports two years’ experience from our implementation of the NSF project titled “Industries of the Future Research Experience for Preservice Teachers in STEM Settings.” The goal of the project is to host 10 high school preservice teachers each summer to participate in Industries of the Future (IotF) research fields and then convert their experience into high school curriculum. IotF topics include artificial intelligence (AI), quantum information science (QIS), advanced manufacturing, advanced communications, and biotechnology. In summer 2023, the first cohort of 8 preservice teachers (PST) from the UH teachHOUSTON (tH) PST program participated in the RE-PST program at UH Cullen College of Engineering (CCOE). In summer 2024, the second cohort also had 8 PSTs. This six-week program sought to advance future educators’ knowledge of concepts in IotF as a means of enriching high school curriculums defined in the Texas Essential Knowledge and Skills (TEKS) standard. Enrichment activities included research workshops, field trips to local companies, and lesson plan design. Compared to the first year, the research mentors were more experienced in assigning research topics and working more closely with PSTs in the second year of the program. This paper provides details on the commonality and changes in the second year’s implementation, in comparison to the first year. Some follow up activities from the first cohort is also reported. Overall, PST participants found the research experience with their mentors beneficial not only to them, but also to their future students according to our findings from interviews.more » « less
-
The United Nations Sustainable Development Goals (UN SDGs) are the focus for a Research Experience for Teachers (RET) Site in Engineering at X University. The relevant and meaningful contexts of the SDGs allow middle and high school teachers and their students to easily make connections between research in a university lab setting to Science, Technology, Engineering, and Math (STEM) concepts in their classroom. Lesson plans inspired by the UN SDGs research experience were developed as an “integrated STEM” problem solving activity by each of the RET teachers. Ten (10) teachers comprising of both pre-service and in-service middle or high school teachers have participated in each cohort over the two years of the NSF RET grant thus far. Six weeks of authentic summer research takes place in 5 different faculty labs at X University under the mentorship of faculty and their graduate students or postdoc. Examples of the research projects include “Photocatalysis for Clean Energy and Environment,” “Genetically Engineering Plasmid DNA molecules to address Tuberculosis Antibiotic Resistance,” and “New Water-Based Technology for Plastic Recycling.” RET participants also attend a weekly coffee session to help guide the teachers through the research process and a weekly ½-day professional development (PD) session to translate the research experience into a classroom lesson plan that aligns to state standards, as well as evidence-backed curriculum design and teaching strategies. Teacher cohort building and community is fostered through group lunches and additional activities (e.g., coordinated lab visits, behind the scenes tour of a local science museum, and industry panel). For evaluation of the RET program, pre/post-surveys measured the teacher’s self-reported ability, confidence, understanding, and frequency of use of the Engineering Design Process (EDP), Integrated STEM, and the UN Sustainable Development Goals. Formative assessment was conducted throughout the summer on various aspects of the RET through surveys and regular check-ins with the teachers. At the end of the summer, focus groups were conducted by an external evaluator for both the teacher participants and the research mentors. Both teachers and mentors declared the program was well planned and executed. The teachers developed close bonds and connections, learned a lot from each other, had meaningful research experiences, and developed a sense of community. The research mentors reported that the teachers provided useful research contributions, were enthusiastic about the research, had genuine lab experiences, developed professional skills, and built good community connections. Areas for improvement included clear expectations for everyone, reducing steep learning curves, and consistency of mentoring across the labs. The RET program continues into the academic year with occasional meetings to report on the implementation of their research-inspired lesson plan in their classroom. The RET participants share that they are bringing in the “real world” relevance to their students with an integrated STEM lens (e.g., climate change and UN SDGs) and that they refer back to their own lab experiences (e.g., importance of measuring chemicals accurately). The research experience has made several positive impacts on the teacher participants that also benefit their students.more » « less
-
null (Ed.)This paper introduces the background and establishment of the first Research Experience for Teachers (RET) Site in Arkansas, supported by the National Science Foundation. The Arkansas Data Analytics Teacher Alliance (AR-DATA) program partners with school districts in the Northwest Arkansas region to promote research-driven high school analytics curriculum and education to reach underserved students, such as those from rural areas. At least thirty 9th-12th grade mathematics, computer science, and pre-engineering teachers will participate in AR-DATA and work with faculty mentors, graduate students, curriculum coaches, and industry experts in a six-week RET Summer Program and academic-year follow up to develop and disseminate learning modules to enhance current curriculum, attain new knowledge of data analytics and engineering applications, and benefit professionally through the RET program activities. The learning modules developed will reflect current cutting-edge analytics research, as well as the development needs of next-generation analytics workforce.more » « less
-
This study advances our team’s overall design and development goal of creating a valid and reliable observation protocol for science and engineering practices (SEPs) experienced by teachers working in research laboratories under the auspices of Research Experience for Teachers (RET). This protocol offers the potential for addressing a wide range of persistent questions related to the experience of RET participants by looking inside the blackbox of apprenticed professional research practice. Framed by cognitive apprenticeship and situated in an engineering RET for K5 teachers, we independently document the SEPs that were consistently experienced across laboratory contexts and thus define a generalized teacher experience. Further, we identify key associations among the teacher's perception of their work, an independent observation of that activity and the perceptions reported by their graduate student mentors. Findings indicate that teacher participants’ perceptions of involvement and not actual experience was a more important predictor of confidence in practice. Perhaps most striking was the negative relationship between teacher confidence when working with mentors (r = -.242), which is similarly described by the mentors for working with teachers (r = -.356). This implies a strong need for further work and support for helping these unique individuals to understand each other’s goals and perspectives and for finding a way to work together that generates mutual feelings of confidence and satisfaction.more » « less
An official website of the United States government

