skip to main content


Title: Probing many-body dynamics in a two-dimensional dipolar spin ensemble
Abstract

The most direct approach for characterizing the quantum dynamics of a strongly interacting system is to measure the time evolution of its full many-body state. Despite the conceptual simplicity of this approach, it quickly becomes intractable as the system size grows. An alternate approach is to think of the many-body dynamics as generating noise, which can be measured by the decoherence of a probe qubit. Here we investigate what the decoherence dynamics of such a probe tells us about the many-body system. In particular, we utilize optically addressable probe spins to experimentally characterize both static and dynamical properties of strongly interacting magnetic dipoles. Our experimental platform consists of two types of spin defects in nitrogen delta-doped diamond: nitrogen-vacancy colour centres, which we use as probe spins, and a many-body ensemble of substitutional nitrogen impurities. We demonstrate that the many-body system’s dimensionality, dynamics and disorder are naturally encoded in the probe spins’ decoherence profile. Furthermore, we obtain direct control over the spectral properties of the many-body system, with potential applications in quantum sensing and simulation.

 
more » « less
NSF-PAR ID:
10401981
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Physics
Volume:
19
Issue:
6
ISSN:
1745-2473
Format(s):
Medium: X Size: p. 836-844
Size(s):
["p. 836-844"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mesoscopic quantum systems exhibit complex many-body quantum phenomena, where interactions between spins and charges give rise to collective modes and topological states. Even simple, non-interacting theories display a rich landscape of energy states—distinct many-particle configurations connected by spin- and energy-dependent transition rates. The ways in which these energy states interact is difficult to characterize or predict, especially in regimes of frustration where many-body effects create a multiply degenerate landscape. Here, we use network science to characterize the complex interconnection patterns of these energy-state transitions. Using an experimentally verified computational model of electronic transport through quantum antidots, we construct networks where nodes represent accessible energy states and edges represent allowed transitions. We find that these networks exhibit Rentian scaling, which is characteristic of efficient transportation systems in computer circuitry, neural circuitry, and human mobility, and can be used to measure the interconnection complexity of a network. We find that the topological complexity of the state transition networks—as measured by Rent’s exponent— correlates with the amount of current flowing through the antidot system. Furthermore, networks corresponding to points of frustration (due, for example, to spin-blockade effects) exhibit an enhanced topological complexity relative to non-frustrated networks. Our results demonstrate that network characterizations of the abstract topological structure of energy landscapes capture salient properties of quantum transport. More broadly, our approach motivates future efforts to use network science to understand the dynamics and control of complex quantum systems.

     
    more » « less
  2. Understanding the thermalization dynamics of quantum many-body systems at the microscopic level is among the central challenges of modern statistical physics. Here we experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal. We use a near-surface NV center as a nanoscale magnetic sensor to probe correlation dynamics of individual spins in a dipolar interacting surface spin ensemble. We observe that the relaxation rate for each spin is significantly slower than the naive expectation based on independently estimated dipolar interaction strengths with nearest neighbors and is strongly correlated with the timescale of the local magnetic field fluctuation. We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder and present a quantitative explanation based on dynamic resonance counting. Finally, we use resonant spin-lock driving to control the effective strength of the local magnetic fields and reveal the role of the dynamical disorder in different regimes. Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles. 
    more » « less
  3. By leveraging shared entanglement between a pair of qubits, one can teleport a quantum state from one particle to another. Recent advances have uncovered an intrinsically many-body generalization of quantum teleportation, with an elegant and surprising connection to gravity. In particular, the teleportation of quantum information relies on many-body dynamics, which originate from strongly-interacting systems that are holographically dual to gravity; from the gravitational perspective, such quantum teleportation can be understood as the transmission of information through a traversable wormhole. Here, we propose and analyze a new mechanism for many-body quantum teleportation -- dubbed peaked-size teleportation. Intriguingly, peaked-size teleportation utilizes precisely the same type of quantum circuit as traversable wormhole teleportation, yet has a completely distinct microscopic origin: it relies upon the spreading of local operators under generic thermalizing dynamics and not gravitational physics. We demonstrate the ubiquity of peaked-size teleportation, both analytically and numerically, across a diverse landscape of physical systems, including random unitary circuits, the Sachdev-Ye-Kitaev model (at high temperatures), one-dimensional spin chains and a bulk theory of gravity with stringy corrections. Our results pave the way towards using many-body quantum teleportation as a powerful experimental tool for: (i) characterizing the size distributions of operators in strongly-correlated systems and (ii) distinguishing between generic and intrinsically gravitational scrambling dynamics. To this end, we provide a detailed experimental blueprint for realizing many-body quantum teleportation in both trapped ions and Rydberg atom arrays; effects of decoherence and experimental imperfections are analyzed. 
    more » « less
  4. Abstract

    High-fidelity preparation of quantum states in an interacting many-body system is often hindered by the lack of knowledge of such states and by limited decoherence times. Here, we study a quantum optimal control (QOC) approach for fast generation of quantum ground states in a finite-sized Jaynes-Cummings lattice with unit filling. Our result shows that the QOC approach can generate quantum many-body states with high fidelity when the evolution time is above a threshold time, and it can significantly outperform the adiabatic approach. We study the dependence of the threshold time on the parameter constraints and the connection of the threshold time with the quantum speed limit. We also show that the QOC approach can be robust against control errors. Our result can lead to advances in the application of the QOC to many-body state preparation.

     
    more » « less
  5. Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the "pure" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the "mixed" or "coding" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge. 
    more » « less