skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observation of measurement-induced quantum phases in a trapped-ion quantum computer
Many-body open quantum systems balance internal dynamics against decoherence from interactions with an environment. Here, we explore this balance via random quantum circuits implemented on a trapped ion quantum computer, where the system evolution is represented by unitary gates with interspersed projective measurements. As the measurement rate is varied, a purification phase transition is predicted to emerge at a critical point akin to a fault-tolerent threshold. We probe the "pure" phase, where the system is rapidly projected to a deterministic state conditioned on the measurement outcomes, and the "mixed" or "coding" phase, where the initial state becomes partially encoded into a quantum error correcting codespace. We find convincing evidence of the two phases and show numerically that, with modest system scaling, critical properties of the transition clearly emerge.  more » « less
Award ID(s):
1818914
PAR ID:
10339334
Author(s) / Creator(s):
Date Published:
Journal Name:
ArXivorg
ISSN:
2331-8422
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Monitored quantum circuits exhibit entanglement transitions at certain measurement rates. Such a transition separates phases characterized by how much information an observer can learn from the measurement outcomes. We study SU(2)-symmetric monitored quantum circuits, using exact numerics and a mapping onto an effective statistical-mechanics model. Due to the symmetry's non-Abelian nature, measuring qubit pairs allows for nontrivial entanglement scaling even in the measurement-only limit. We find a transition between a volume-law entangled phase and a critical phase whose diffusive purification dynamics emerge from the non-Abelian symmetry. Additionally, we identify a “spin-sharpening transition.” Across the transition, the rate at which measurements reveal information about the total spin quantum number changes parametrically with system size. 
    more » « less
  2. The intensely studied measurement-induced entanglement phase transition has become a hallmark of nonunitary quantum many-body dynamics. Usually, such a transition only appears at the level of each individual quantum trajectory, and is absent for the density matrix averaged over measurement outcomes. In this work, we introduce a class of adaptive random circuit models with feedback that exhibit transitions in both settings. After each measurement, a unitary operation is either applied or not depending on the measurement outcome, which steers the averaged density matrix towards a unique state above a certain measurement threshold. Interestingly, the transition for the density matrix and the entanglement transition in the individual quantum trajectory in general happen at different critical measurement rates. We demonstrate that the former transition belongs to the parity-conserving universality class by explicitly mapping to a classical branching-annihilating random-walk process. 
    more » « less
  3. Symmetry in mixed quantum states can manifest in two distinct forms: , where each individual pure state in the quantum ensemble is symmetric with the same charge, and , which applies only to the entire ensemble. This paper explores a novel type of spontaneous symmetry breaking (SSB) where a strong symmetry is broken to a weak one. While the SSB of a weak symmetry is measured by the long-ranged two-point correlation function, the strong-to-weak SSB (SWSSB) is measured by the . We prove that SWSSB is a universal property of mixed-state quantum phases, in the sense that the phenomenon of SWSSB is robust against symmetric low-depth local quantum channels. We also show that the symmetry breaking is “spontaneous” in the sense that the effect of a local symmetry-breaking measurement cannot be recovered locally. We argue that a thermal state at a nonzero temperature in the canonical ensemble (with fixed symmetry charge) should have spontaneously broken strong symmetry. Additionally, we study nonthermal scenarios where decoherence induces SWSSB, leading to phase transitions described by classical statistical models with bond randomness. In particular, the SWSSB transition of a decohered Ising model can be viewed as the “ungauged” version of the celebrated toric-code decodability transition. We confirm that, in the decohered Ising model, the SWSSB transition defined by the fidelity correlator is the only physical transition in terms of channel recoverability. We also comment on other (inequivalent) definitions of SWSSB, through correlation functions with higher Rényi indices. Published by the American Physical Society2025 
    more » « less
  4. We generalize the area-law violating models of Fredkin and Motzkin spin chains into two dimensions by building quantum six- and nineteen-vertex models with correlated interactions. The Hamiltonian is frustration free, and its projectors generate ergodic dynamics within the subspace of height configuration that are non negative. The ground state is a volume- and color-weighted superposition of classical bi-color vertex configurations with non-negative heights in the bulk and zero height on the boundary. The entanglement entropy between subsystems has a phase transition as the q q -deformation parameter is tuned, which is shown to be robust in the presence of an external field acting on the color degree of freedom. The ground state undergoes a quantum phase transition between area- and volume-law entanglement phases with a critical point where entanglement entropy scales as a function L\log L L log L of the linear system size L L . Intermediate power law scalings between L\log L L log L and L^2 L 2 can be achieved with an inhomogeneous deformation parameter that approaches 1 at different rates in the thermodynamic limit. For the q>1 q > 1 phase, we construct a variational wave function that establishes an upper bound on the spectral gap that scales as q^{-L^3/8} q − L 3 / 8 . 
    more » « less
  5. We study the quantum critical behavior in a multiconnected Jaynes-Cummings lattice using the density-matrix renormalization group method, where cavity polaritons exhibit a Mott-insulator-to-superfluid phase transition. We calculate the phase boundaries and the quantum critical points. 
    more » « less