skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large Binocular Telescope Search for Companions and Substructures in the (Pre)transitional Disk of AB Aurigae
Abstract Multiwavelength high-resolution imaging of protoplanetary disks has revealed the presence of multiple, varied substructures in their dust and gas components, which might be signposts of young, forming planetary systems. AB Aurigae bears an emblematic (pre)transitional disk showing spiral structures observed in the inner cavity of the disk in both the submillimeter (Atacama Large Millimeter/submillimeter Array (ALMA); 1.3 mm, 12 CO) and near-infrared (Spectro-polarimetric High-contrast Exoplanet Research; 1.5–2.5 μ m) wavelengths, which have been claimed to arise from dynamical interactions with a massive companion. In this work, we present new deep K s (2.16 μ m) and L ′ (3.7 μ m) band images of AB Aurigae obtained with the L/M-band Infrared Camera on the Large Binocular Telescope, aimed for the detection of both planetary companions and extended disk structures. No point source is recovered, in particular at the outer regions of the disk, where a putative candidate ( ρ = 0.″681, PA = 7.°6) had been previously claimed. The nature of a second innermost planet candidate ( ρ = 0.″16, PA = 203.°9) cannot be investigated by the new data. We are able to derive 5 σ detection limits in both magnitude and mass for the system, going from 14 M Jup at 0.″3 (49 au) down to 3–4 M Jup at 0.″6 (98 au) and beyond, based on the ATMO 2020 evolutionary models. We detect the inner spiral structures (<0.″5) resolved in both CO and polarimetric H -band observations. We also recover the ring structure of the system at larger separation (0.″5–0.″7) showing a clear southeast/northwest asymmetry. This structure, observed for the first time at L ′ band, remains interior to the dust cavity seen at ALMA, suggesting an efficient dust trapping mechanism at play in the disk.  more » « less
Award ID(s):
1745406
PAR ID:
10402041
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
926
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
71
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report an Atacama Large Millimeter/submillimeter Array 0.88 mm (Band 7) continuum detection of the accretion disk around SR 12 c, an ∼11 M Jup planetary-mass companion (PMC) orbiting its host binary at 980 au. This is the first submillimeter detection of a circumplanetary disk around a wide PMC. The disk has a flux density of 127 ± 14 μ Jy and is not resolved by the ∼0.″1 beam, so the dust disk radius is likely less than 5 au and can be much smaller if the dust continuum is optically thick. If, however, the dust emission is optically thin, then the SR 12 c disk has a comparable dust mass to the circumplanetary disk around PDS 70 c but is about five times lower than that of the ∼12 M Jup free-floating OTS 44. This suggests that disks around bound and unbound planetary-mass objects can span a wide range of masses. The gas mass estimated with an accretion rate of 10 −11 M ☉ yr −1 implies a gas-to-dust ratio higher than 100. If cloud absorption is not significant, a nondetection of 12 CO(3–2) implies a compact gas disk around SR 12 c. Future sensitive observations may detect more PMC disks at 0.88 mm flux densities of ≲100 μ Jy. 
    more » « less
  2. Abstract We present near-infrared Large Binocular Telescope LMIRCam imagery of the disk around the Herbig Ae/Be star AB Aurigae. A comparison of the surface brightness at K s (2.16 μ m), H 2 O narrowband (3.08 μ m), and L ′ (3.7 μ m) allows us to probe the presence of icy grains in this (pre)transitional disk environment. By applying reference differential imaging point-spread function subtraction, we detect the disk at high signal-to-noise ratios in all three bands. We find strong morphological differences between the bands, including asymmetries consistent with the observed spiral arms within 100 au in L ′ . An apparent deficit of scattered light at 3.08 μ m relative to the bracketing wavelengths ( K s and L ′ ) is evocative of ice absorption at the disk surface layer. However, the Δ( K s − H 2 O) color is consistent with grains with little to no ice (0%–5% by mass). The Δ ( H 2 O − L ′ ) color, conversely, suggests grains with a much higher ice mass fraction (∼0.68), and the two colors cannot be reconciled under a single grain population model. Additionally, we find that the extremely red Δ ( K s − L ′ ) disk color cannot be reproduced under conventional scattered light modeling with any combination of grain parameters or reasonable local extinction values. We hypothesize that the scattering surfaces at the three wavelengths are not colocated, and that the optical depth effects in each wavelength result from probing the grain population at different disk surface depths. The morphological similarity between K s and H 2 O suggests that their scattering surfaces are near one another, lending credence to the Δ( K s − H 2 O) disk color constraint of <5% ice mass fraction for the outermost scattering disk layer. 
    more » « less
  3. We present high-resolution millimeter continuum ALMA observations of the disks around the T Tauri stars LkCa 15 and 2MASS J16100501-2132318 (hereafter, J1610). These transition disks host dust-depleted inner regions, which have possibly been carved by massive planets, and they are of prime interest to the study of the imprints of planet-disk interactions. While at moderate angular resolution, they appear as a broad ring surrounding a cavity, the continuum emission resolves into multiple rings at a resolution of ~60 × 40 mas (~7.5 au for LkCa 15, ~6 au for J1610) and ~7 μ Jy beam −1 rms at 1.3 mm. In addition to a broad extended component, LkCa 15 and J1610 host three and two narrow rings, respectively, with two bright rings in LkCa 15 being radially resolved. LkCa 15 possibly hosts another faint ring close to the outer edge of the mm emission. The rings look marginally optically thick, with peak optical depths of ~0.5 (neglecting scattering), in agreement with high angular resolution observations of full disks. We performed hydrodynamical simulations with an embedded, sub-Jovian-mass planet and show that the observed multi-ringed substructure can be qualitatively explained as the outcome of the planet-disk interaction. We note, however, that the choice of the disk cooling timescale alone can significantly impact the resulting gas and dust distributions around the planet, leading to different numbers of rings and gaps and different spacings between them. We propose that the massive outer disk regions of transition disks are favorable places for planetesimals, and possibly second-generation planet formation of objects with a lower mass than the planets carving the inner cavity (typically few M Jup ), and that the annular substructures observed in LkCa 15 and J1610 may be indicative of planetary core formation within dust-rich pressure traps. Current observations are compatible with other mechanisms contributing to the origin of the observed substructures, in particular with regard to narrow rings generated (or facilitated) at the edge of the CO and N 2 snowlines. 
    more » « less
  4. Context. T Tauri stars are low-mass young stars whose disks provide the setting for planet formation. Despite this, their structure is poorly understood. We present new infrared interferometric observations of the SU Aurigae circumstellar environment that offer resolution that is three times higher and a better baseline position angle coverage than previous observations. Aims. We aim to investigate the characteristics of the circumstellar material around SU Aur, constrain the disk geometry, composition and inner dust rim structure. Methods. The CHARA array offers unique opportunities for long baseline observations, with baselines up to 331 m. Using the CLIMB three-telescope combiner in the K -band allows us to measure visibilities as well as closure phase. We undertook image reconstruction for model-independent analysis, and fitted geometric models such as Gaussian and ring distributions. Additionally, the fitting of radiative transfer models constrain the physical parameters of the disk. For the first time, a dusty disk wind is introduced to the radiative transfer code TORUS to model protoplanetary disks. Our implementation is motivated by theoretical models of dusty disk winds, where magnetic field lines drive dust above the disk plane close to the sublimation zone. Results. Image reconstruction reveals an inclined disk with slight asymmetry along its minor-axis, likely due to inclination effects obscuring the inner disk rim through absorption of incident star light on the near-side and thermal re-emission and scattering of the far-side. Geometric modelling of a skewed ring finds the inner rim at 0.17 ± 0.02 au with an inclination of 50.9 ± 1.0° and minor axis position angle 60.8 ± 1.2°. Radiative transfer modelling shows a flared disk with an inner radius at 0.18 au which implies a grain size of 0.4 μ m assuming astronomical silicates and a scale height of 15.0 at 100 au. Among the tested radiative transfer models, only the dusty disk wind successfully accounts for the K -band excess by introducing dust above the mid-plane. 
    more » « less
  5. Abstract We present Atacama Large Millimeter/submillimeter Array (ALMA) observations of the Class I source Oph IRS 63 in the context of the Early Planet Formation in Embedded Disks large program. Our ALMA observations of Oph IRS 63 show a myriad of protostellar features, such as a shell-like bipolar outflow (in12CO), an extended rotating envelope structure (in13CO), a streamer connecting the envelope to the disk (in C18O), and several small-scale spiral structures seen toward the edge of the dust continuum (in SO). By analyzing the velocity pattern of13CO and C18O, we measure a protostellar mass ofM= 0.5 ± 0.2Mand confirm the presence of a disk rotating at almost Keplerian velocity that extends up to ∼260 au. These calculations also show that the gaseous disk is about four times larger than the dust disk, which could indicate dust evolution and radial drift. Furthermore, we model the C18O streamer and SO spiral structures as features originating from an infalling rotating structure that continuously feeds the young protostellar disk. We compute an envelope-to-disk mass infall rate of ∼10−6Myr−1and compare it to the disk-to-star mass accretion rate of ∼10−8Myr−1, from which we infer that the protostellar disk is in a mass buildup phase. At the current mass infall rate, we speculate that soon the disk will become too massive to be gravitationally stable. 
    more » « less