skip to main content


Title: Improving Solar Flare Prediction by Time Series Outlier Detection
Solar flares not only pose risks to outer space technologies and astronauts’ well being, but also cause disruptions on earth to our high-tech, interconnected infrastructure our lives highly depend on. While a number of machine-learning methods have been proposed to improve flare prediction, none of them, to the best of our knowledge, have investigated the impact of outliers on the reliability and robustness of those models’ performance. In this study, we investigate the impact of outliers in a multivariate time series benchmark dataset, namely SWAN-SF, on flare prediction models, and test our hypothesis. That is, there exist outliers in SWAN-SF, removal of which enhances the performance of the prediction models on unseen datasets. We employ Isolation Forest to detect the outliers among the weaker flare instances. Several experiments are carried out using a large range of contamination rates which determine the percentage of present outliers. We assess the quality of each dataset in terms of its actual contamination using TimeSeriesSVC. In our best findings, we achieve a 279% increase in True Skill Statistic and 68% increase in Heidke Skill Score. The results show that overall a significant improvement can be achieved for flare prediction if outliers are detected and removed properly.  more » « less
Award ID(s):
1931555
PAR ID:
10402088
Author(s) / Creator(s):
; ; ;
Editor(s):
Rutkowski, L.; Scherer, R.; Korytkowski, M.; Pedrycz W.; Tadeusiewicz R.; Zurada J.
Date Published:
Journal Name:
Lecture notes in computer science
Volume:
13589
ISSN:
1611-3349
Page Range / eLocation ID:
152-164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a case study of solar flare forecasting by means of metadata feature time series, by treating it as a prominent class-imbalance and temporally coherent problem. Taking full advantage of pre-flare time series in solar active regions is made possible via the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, a partitioned collection of multivariate time series of active region properties comprising 4075 regions and spanning over 9 yr of the Solar Dynamics Observatory period of operations. We showcase the general concept of temporal coherence triggered by the demand of continuity in time series forecasting and show that lack of proper understanding of this effect may spuriously enhance models’ performance. We further address another well-known challenge in rare-event prediction, namely, the class-imbalance issue. The SWAN-SF is an appropriate data set for this, with a 60:1 imbalance ratio for GOES M- and X-class flares and an 800:1 imbalance ratio for X-class flares against flare-quiet instances. We revisit the main remedies for these challenges and present several experiments to illustrate the exact impact that each of these remedies may have on performance. Moreover, we acknowledge that some basic data manipulation tasks such as data normalization and cross validation may also impact the performance; we discuss these problems as well. In this framework we also review the primary advantages and disadvantages of using true skill statistic and Heidke skill score, two widely used performance verification metrics for the flare-forecasting task. In conclusion, we show and advocate for the benefits of time series versus point-in-time forecasting, provided that the above challenges are measurably and quantitatively addressed. 
    more » « less
  2. Solar flares are characterized by sudden bursts of electromagnetic radiation from the Sun’s surface, and are caused by the changes in magnetic field states in active solar regions. Earth and its surrounding space environment can suffer from various negative impacts caused by solar flares, ranging from electronic communication disruption to radiation exposure-based health risks to astronauts. In this paper, we address the solar flare prediction problem from magnetic field parameter-based multivariate time series (MVTS) data using multiple state-of-the-art machine learning classifiers that include MINImally RandOm Convolutional KErnel Transform (MiniRocket), Support Vector Machine (SVM), Canonical Interval Forest (CIF), Multiple Representations Sequence Learner (Mr-SEQL), and a Long Short-Term Memory (LSTM)-based deep learning model. Our experiment is conducted on the Space Weather Analytics for Solar Flares (SWAN-SF) benchmark data set, which is a partitioned collection of MVTS data of active region magnetic field parameters spanning over nine years of operation of the Solar Dynamics Observatory (SDO). The MVTS instances of the SWAN-SF dataset are labeled by GOES X-ray flux-based flare class labels, and attributed to extreme class imbalance because of the rarity of the major flaring events (e.g., X and M). As a performance validation metric in this class-imbalanced dataset, we used the True Skill Statistic (TSS) score. Finally, we demonstrate the advantages of the MVTS learning algorithm MiniRocket, which outperformed the aforementioned classifiers without the need for essential data preprocessing steps such as normalization, statistical summarization, and class imbalance handling heuristics.

     
    more » « less
  3. Abstract

    The accurate prediction of solar flares is crucial due to their risks to astronauts, space equipment, and satellite communication systems. Our research enhances solar flare prediction by employing sophisticated data preprocessing and sampling techniques for the Space Weather Analytics for Solar Flares (SWAN-SF) data set, a rich source of multivariate time series data of solar active regions. Our study adopts a multifaceted approach encompassing four key methodologies. Initially, we address over 10 million missing values in the SWAN-SF data set through our innovative imputation technique called fast Pearson correlation-based k-nearest neighbors imputation. Subsequently, we propose a precise normalization technique, called LSBZM normalization, tailored for time series data, merging various strategies (log, square root, Box–Cox, Z-score, and min–max) to uniformly scale the data set's 24 attributes (photospheric magnetic field parameters), addressing issues such as skewness. We also explore the “near decision boundary sample removal” technique to enhance the classification performance of the data set by effectively resolving the challenge of class overlap. Finally, a pivotal aspect of our research is a thorough evaluation of diverse oversampling and undersampling methods, including SMOTE, ADASYN, Gaussian noise injection, TimeGAN, Tomek links, and random undersampling, to counter the severe imbalance in the SWAN-SF data set, notably a 60:1 ratio of major (X and M) to minor (C, B, and FQ) flaring events in binary classification. To demonstrate the effectiveness of our methods, we use eight classification algorithms, including advanced deep-learning-based architectures. Our analysis shows significant true skill statistic scores, underscoring the importance of data preprocessing and sampling in time-series-based solar flare prediction.

     
    more » « less
  4. Lossio-Ventura J.A. ; Valverde-Rebaza J. ; Diaz E. ; Muñante D. ; Gavidia-Calderon C. ; Baria Valejo A.D. ; Alatrista-Salas H. (Ed.)
    The efforts in solar flare prediction have been engendered by the advancements in machine learning and deep learning methods. We present a new approach to flare prediction using full-disk compressed magnetogram images with Convolutional Neural Networks. We selected three prediction modes, among which two are binary for predicting the occurrence of ≥M1.0 and ≥C4.0 class flares and one is a multi-class mode for predicting the occurrence of more » « less
  5. Several natural phenomena, such as floods, earth-quakes, volcanic eruptions, or extreme space weather events often come with severity indexes. While these indexes, whether linear or logarithmic are vital, data-driven predictive models for these events rather use a fixed threshold. In this paper, we explore encoding this ordinality to enhance the performance of data-driven models, with specific application in solar flare forecasting. The prediction of solar flares is commonly approached as a binary forecasting problem, categorizing events as either Flare (FL) or No-Flare (NF) based on a chosen threshold (e.g., >C-class, > M-class, or >X-class). However, this binary formulation overlooks the inherent ordinality between the sub-classes within each binary class (FL and NF). In this paper, we propose a novel loss function aimed at optimizing the binary flare prediction problem by embedding the intrinsic ordinal flare characteristics into the binary cross-entropy (BCE) loss function. This modification is intended to provide the model with better guidance based on the ordinal characteristics of the data and improve the overall performance of the models. For our experiments, we employ a ResNet34-based model with transfer learning to predict 2:M-class flares by utilizing the shape-based features of magnetograms of active region (AR) patches spanning from -90° to +90°of solar longitude as our input data. We use a composite skill score (CSS) as our evaluation metric, which is calculated as the geometric mean of the True Skill Score (TSS) and the Heidke Skill Score (HSS) to rank and compare our models' performance. The primary contributions of this work are as follows: (i) We introduce a novel approach to encode ordinality into a binary loss function showing an application to solar flare prediction, (ii) We enhance solar flare forecasting by enabling flare predictions for each AR across the entire solar disk, without any longitudinal restrictions, and evaluate and compare performance. (iii) Our candidate model, optimized with the proposed loss function, shows an improvement of (~17%, (~14%, and (~13% for AR patches within ±30°, ±60°, and ±90° of solar longitude, respectively in terms of CSS, when compared with standard BCE. Additionally, we demonstrate the ability to issue flare forecasts for ARs in near-limb regions (regions between ±60° to ±90°) with a CSS=0.34 (TSS=0.50 and HSS=0.23), expanding the scope of AR-based models for solar flare prediction. This advances the reliability of solar flare forecasts, leading to more effective prediction capabilities. 
    more » « less