skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rhythmic RFID Authentication
Passive RFID technology is widely used in user authentication and access control. We propose RF-Rhythm, a secure and usable two-factor RFID authentication system with strong resilience to lost/stolen/cloned RFID cards. In RF-Rhythm, each legitimate user performs a sequence of taps on his/her RFID card according to a self-chosen secret melody. Such rhythmic taps can induce phase changes in the backscattered signals, which the RFID reader can detect to recover the user’s tapping rhythm. In addition to verifying the RFID card’s identification information as usual, the backend server compares the extracted tapping rhythm with what it acquires in the user enrollment phase. The user passes authentication checks if and only if both verifications succeed. We also propose a novel phase-hopping protocol in which the RFID reader emits Continuous Wave (CW) with random phases for extracting the user’s secret tapping rhythm. Our protocol can prevent a capable adversary from extracting and then replaying a legitimate tapping rhythm from sniffed RFID signals. Comprehensive user experiments confirm the high security and usability of RF-Rhythm with false-positive and false-negative rates close to zero.  more » « less
Award ID(s):
1824355
PAR ID:
10402205
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
IEEE/ACM Transactions on Networking
ISSN:
1063-6692
Page Range / eLocation ID:
1 to 14
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Continuous location authentication (CLA) seeks to continuously and automatically verify the physical presence of legitimate users in a protected indoor area. CLA can play an important role in contexts where access to electrical or physical resources must be limited to physically present legitimate users. In this paper, we present WearRF-CLA, a novel CLA scheme built upon increasingly popular wrist wearables and UHF RFID systems. WearRF-CLA explores the observation that human daily routines in a protected indoor area comprise a sequence of human-states (e.g., walking and sitting) that follow predictable state transitions. Each legitimate WearRF-CLA user registers his/her RFID tag and also wrist wearable during system enrollment. After the user enters a protected area, WearRF-CLA continuously collects and processes the gyroscope data of the wrist wearable and the phase data of the RFID tag signals to verify three factors to determine the user's physical presence/absence without explicit user involvement: (1) the tag ID as in a traditional RFID authentication system, (2) the validity of the human-state chain, and (3) the continuous coexistence of the paired wrist wearable and RFID tag with the user. The user passes CLA if and only if all three factors can be validated. Extensive user experiments on commodity smartwatches and UHF RFID devices confirm the very high security and low authentication latency of WearRF-CLA. 
    more » « less
  2. Commodity ultra-high-frequency (UHF) RFID authentication systems only provide weak user authentication, as RFID tags can be easily stolen, lost, or cloned by attackers. This paper presents the design and evaluation of SmartRFID, a novel UHF RFID authentication system to promote commodity crypto-less UHF RFID tags for security-sensitive applications. SmartRFID explores extremely popular smart devices and requires a legitimate user to enroll his smart device along with his RFID tag. Besides authenticating the RFID tag as usual, SmartRFID verifies whether the user simultaneously possesses the associated smart device with both feature-based machine learning and deep learning techniques. The user is considered authentic if and only if passing the dual verifications. Comprehensive user experiments on commodity smartwatches and RFID devices confirmed the high security and usability of SmartRFID. In particular, SmartRFID achieves a true acceptance rate of above 97.5% and a false acceptance rate of less than 0.7% based on deep learning. In addition, SmartRFID can achieve an average authentication latency of less than 2.21s, which is comparable to inputting a PIN on a door keypad or smartphone. 
    more » « less
  3. Chaotic antenna arrays (CAAs) are phased antenna arrays with randomized antenna elements exhibiting unique and spatially dependent phase errors. CAAs are promising for generating strong RF fingerprints that can be used for device authentication. For the RF fingerprint to remain secure, it is crucial that the phase errors remain unknown to the user of the CAA. This on the other hand inhibits conventional beam steering that relies on a known antenna array structure. Additionally, the user with the CAA cannot employ known physical layer security methods that are based on phased antenna arrays. To alleviate this issue, we propose a novel security method in networks with distributed receivers. The approach combines i) distortion caused by changes in the array pattern with ii) encoding based on the phase difference at distributed locations, which makes the method resistant against eavesdropping. Mitigating the distortion and decoding the signal becomes only possible if the eavesdropper can obtain all signals received at all legitimate receivers. 
    more » « less
  4. The proliferation of the Internet of Things is calling for new modalities that enable human interaction with smart objects. Recent research has explored RFID tags as passive sensors to detect finger touch. However, existing approaches either rely on custom-built RFID readers or are limited to pre-trained finger-swiping gestures. In this paper, we introduce KeyStub, which can discriminate multiple discrete keystrokes on an RFID tag. KeyStub interfaces with commodity RFID ICs with multiple microwave-band resonant stubs as keys. Each stub's geometry is designed to create a predefined impedance mismatch to the RFID IC upon a keystroke, which in turn translates into a known amplitude and phase shift, remotely detectable by an RFID reader. KeyStub combines two ICs' signals through a single common-mode antenna and performs differential detection to evade the need for calibration and ensure reliability in heavy multi-path environments. Our experiments using a commercial-off-the-shelf RFID reader and ICs show that up to 8 buttons can be detected and decoded with accuracy greater than 95%. KeyStub points towards a novel way of using resonant stubs to augment RF antenna structures, thus enabling new passive wireless interaction modalities. 
    more » « less
  5. Traditional one-time user authentication processes might cause friction and unfavorable user experience in many widely-used applications. This is a severe problem in particular for security-sensitive facilities if an adversary could obtain unauthorized privileges after a user’s initial login. Recently, continuous user authentication (CA) has shown its great potential by enabling seamless user authentication with few active participation. We devise a low-cost system exploiting a user’s pulsatile signals from the photoplethysmography (PPG) sensor in commercial wrist-worn wearables for CA. Compared to existing approaches, our system requires zero user effort and is applicable to practical scenarios with non-clinical PPG measurements having motion artifacts (MA). We explore the uniqueness of the human cardiac system and design an MA filtering method to mitigate the impacts of daily activities. Furthermore, we identify general fiducial features and develop an adaptive classifier using the gradient boosting tree (GBT) method. As a result, our system can authenticate users continuously based on their cardiac characteristics so little training effort is required. Experiments with our wrist-worn PPG sensing platform on 20 participants under practical scenarios demonstrate that our system can achieve a high CA accuracy of over 90% and a low false detection rate of 4% in detecting random attacks. 
    more » « less