skip to main content


Title: Magmatic addition rates differentiate periods of steady-state versus flare-up magmatism in the Central Andean arc
Abstract

Cordilleran arcs are built by long periods of steady-state magmatism punctuated by transient high-flux magmatic episodes or flare-ups. Such flare-ups, manifested as periods of prodigious silicic volcanism and magmatism, result from geodynamic perturbations that cause elevated rates of magma addition to the crust. Questions remain, however, about how magmatic addition rates quantitatively compare between steady-state and flare-up modes of arc magmatism, and how long after the major geodynamic perturbation the flare-up begins. Here, we compute new estimates of erupted volumes over the last 35 Myr for the 22.5–29°S segment of the Central Andes based on a new volcanic geospatial database. These yield magmatic addition rates at least an order of magnitude higher during flare-up compared to steady-state conditions. A lag time of ~8–12 Myr between ocean ridge subduction (the major geodynamic perturbation in the Central Andean arc) and the onset of flare-up conditions is estimated.

 
more » « less
NSF-PAR ID:
10402219
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ignimbrite flare-ups are rare periods of intense silicic volcanism during which the pyroclastic volume and eruptive frequency is more than an order of magnitude higher than background activity. Investigating the compositional differences between flare-up and steady-state magmas provides critical constraints on the petrogenetic causes for the event and can offer unique opportunities to investigate the role of large-scale tectonic or geodynamic processes in arc magmatism. In this study, we focus on the bimodal Deschutes Formation ignimbrite flare-up of Central Oregon, which erupted unusually high volumes of pyroclastic material 6.25–5.45 Ma from a new axis of volcanism in the Cascades arc. This episode is marked by increased eruption rates and eruption of more silicic compositions relative to the Quaternary Cascade arc, which rarely erupts rhyolites. Ignimbrites are crystal-poor (<10%) dacite to rhyolites (mostly 65–77 wt.% SiO2) with anhydrous mineral assemblages and higher FeO/MgO, Y, Eu/Eu*, MREE and Zr/Sr, indicating drier magmatic evolution compared to the Quaternary arc, and are more similar to those from the rear-arc High Lava Plains (HLP) province that lies to the east. Magnetite-ilmenite oxybarometry indicates that Deschutes Formation felsic magmas tend to be hotter and more reduced (NNO-1 to NNO) than the Quaternary arc (NNO to NNO + 1.5). Rhyolite-MELTS geobarometry suggests complex storage of diverse Deschutes Formation magmas within the shallow crust (50–250 MPa), and the common co-eruption of multiple plagioclase populations, pumice compositions, and compositionally banded pumice suggest variable degrees of mixing and mingling of distinct magmas. Deschutes magmas also have low δ18Oplagioclase values that indicate partial melting and assimilation of hydrothermally altered shallow crust. Trace element systematics and rhyolite-MELTS modeling suggests that felsic pumice cannot be produced by simple fractionation of co-erupted mafic pumice or basaltic lavas, and requires a crustal melting origin, and trace elements and Pb isotopes suggest that young mafic crust may have been the primary protolith. We suggest that partial melting produced low-Si rhyolite melt (~72 wt.%) that acted as both a parent for the most evolved rhyolites, and as a mixing endmember to create the dacite to rhyodacite magmas with heterogenous plagioclase populations. Unlike the predominantly calc-alkaline basalts erupted in the Quaternary Cascade arc, Deschutes Formation primary basalts are mostly low-K tholeiites, indicative of decompression melting. These are similar to the compositions erupted during a contemporaneous pulse of low-K tholeiite volcanism across the whole HLP that reached into the Cascades rear-arc. We suggest that intra-arc extension focused decompression melts from the back-arc into the arc and that tensional stresses allowed this high flux of hot-dry-reduced basalt throughout the crustal column, causing partial melting of mafic protoliths and the production of hot-dry-reduced rhyolite melts. Depletion of incompatible elements in successive rhyolites implies progressive depletion in fertility of the protolith. Extension also allowed for the establishment of a robust hydrothermal system, and assimilation of hydrothermally-altered rocks by magmas residing in a shallow, complex storage network lead to low δ18O melts. Our findings suggest the integral role that extensional tectonics played in producing an unusual ignimbrite flare-up of hot-dry-reduced rhyolite magmas that are atypical of the Cascades arc and may be an important contributor to flare-ups at arcs worldwide. 
    more » « less
  2. null (Ed.)
    Continental arcs in Cordilleran orogenic systems display episodic changes in magma production rate, alternating between flare ups (70–90 km3 km􀀀 1 Myr􀀀 1) and lulls (< 20 km3 km􀀀 1 Myr􀀀 1) on timescales of tens of millions of years. Arc segments or individual magmatic suites may have even higher rates, up several 100 s of km3 km􀀀 1 Myr􀀀 1, during flare ups. These rates are largely determined by estimating volumes of arc crust, but do not reflect melt production from the mantle. The bulk of mantle-derived magmas are recycled back into the mantle by delamination of arc roots after differentiation in the deep crust. Mantle-derived melt production rates for continental arcs are estimated to be 140–215 km3 km􀀀 1 Myr􀀀 1 during flare ups and ≤ 15 km3 km􀀀 1 Myr􀀀 1 during lulls. Melt production rates averaged over multiple magmatic cycles are consistent with independent estimates for partial melting of the mantle wedge in subduction zones, however, the rates during flare ups and lulls are both anomalously high and anomalously low, respectively. The difference in mantle-derived melt production between flare ups and lulls is larger than predicted by petrologic and numerical models that explore the range of globally observed subduction parameters (e.g., convergence rate, height of the mantle wedge). This suggests that other processes are required to increase magmatism during flare ups and suppress magmatism during lulls. There are many viable explanations, but one possibility is that crystallized melts from the asthenospheric mantle wedge are temporarily stored in the deep lithosphere during lulls and then remobilized during flare ups. Basaltic melts may stall in the mantle lithosphere in inactive parts of the arc system, like the back-arc, refertilizing the mantle lithosphere and suppressing melt delivery to the lower crust. Subsequent landward arc migration (i.e., toward the interior of the continent) may encounter such refertilized mantle lithosphere magma source regions, contributing to magmatic activity during a flare up. A review of continental arcs globally suggests that flare ups commonly coincide with landward arc migration and that this migration may start tens of millions of years before the flare up occurs. The region of magmatic activity, or arc width, can also expand significantly during a flare up. Arc migration or expansion into different mantle source regions and across lithospheric and crustal boundaries can cause temporal shifts in the radiogenic isotopic composition of magmatism. In the absence of arc migration, temporal shifts are more muted. Isotopic studies of mantle xenoliths and exposures of deep arc crust suggest that that primary, mantle-derived magmas generated during flare ups reflect substantial contributions from the subcontinental mantle lithosphere. Arc migration may be caused by a variety of mechanisms, including slab anchoring or slab folding in the mantle transition zone that could generate changes in slab dip. Episodic slab shallowing is associated with many tectonic processes in Cordilleran orogenic systems, like alternations between shortening and extension in the upper plate. Studies of arc migration may help to link irregular magmatic production in continental arcs with geodynamic models for orogenic cyclicity. 
    more » « less
  3. Abstract The southern Coast Mountain batholith was episodically active from Jurassic to Eocene time and experienced four distinct high magmatic flux events during that period. Similar episodicity has been recognized in arcs worldwide, yet the mechanism(s) driving such punctuated magmatic behavior are debated. This study uses zircon Hf and O isotopes, with whole-rock and mineral geochemistry, to track spatiotemporal changes in southern Coast Mountains batholith melt sources and to evaluate models of flare-up behavior and crust formation in Cordilleran arc systems. Zircon Hf isotope analysis yielded consistently primitive values, with all zircon grains recording initial εHf between +6 and +16. The majority (97%) of zircons analyzed yielded δ18O values between 4.2‰ and 6.5‰, and only five grains recorded values of up to 8.3‰. These isotopic results are interpreted to reflect magmatism dominated by mantle melting during all time periods and across all areas of the southern batholith, which argues against the periodic input of more melt-fertile crustal materials as the driver of episodic arc magmatism. They also indicate that limited crustal recycling is needed to produce the large volumes of continental crust generated in the batholith. Although the isotopic character of intrusions is relatively invariant through time, magmas emplaced during flare-ups record higher Sr/Y and La/Yb(N) and lower zircon Ti and Yb concentrations, which is consistent with melting in thickened crust with garnet present as a fractionating phase. Flare-ups are also temporally associated with periods when the southern Coast Mountains batholith both widens and advances inboard. We suggest that the landward shift of the arc into more fertile lithospheric mantle domains triggers voluminous magmatism and is accompanied by magmatic and/or tectonic thickening. Overall, these results demonstrate that the magmatic growth of Cordilleran arcs can be spatially and temporally complex without requiring variability in the contributions of crust and/or mantle to the batholith. 
    more » « less
  4. Abstract We present >500 zircon δ18O and Lu-Hf isotope analyses on previously dated zircons to explore the interplay between spatial and temporal magmatic signals in Zealandia Cordillera. Our data cover ~8500 km2 of middle and lower crust in the Median Batholith (Fiordland segment of Zealandia Cordillera) where Mesozoic arc magmatism along the paleo-Pacific margin of Gondwana was focused along an ~100 km wide, arc-parallel zone. Our data reveal three spatially distinct isotope domains that we term the eastern, central, and western isotope domains. These domains parallel the Mesozoic arc-axis, and their boundaries are defined by major crustal-scale faults that were reactivated as ductile shear zones during the Early Cretaceous. The western isotope domain has homogenous, mantle-like δ 18O (Zrn) values of 5.8 ± 0.3‰ (2 St.dev.) and initial εHf (Zrn) values of +4.2 ± 1.0 (2 St.dev.). The eastern isotope domain is defined by isotopically low and homogenous δ18O (Zrn) values of 3.9 ± 0.2‰ and initial εHf values of +7.8 ± 0.6. The central isotope domain is characterized by transitional isotope values that display a strong E-W gradient with δ18O (Zrn) values rising from 4.6 to 5.9‰ and initial εHf values decreasing from +5.5 to +3.7. We find that the isotope architecture of the Median Batholith was in place before the initiation of Mesozoic arc magmatism and pre-dates Early Cretaceous contractional deformation and transpression. Our data show that Mesozoic pluton chemistry was controlled in part by long-lived, spatially distinct isotope domains that extend from the crust through to the upper mantle. Isotope differences between these domains are the result of the crustal architecture (an underthrusted low-δ18O source terrane) and a transient event beginning at ca. 129 Ma that primarily involved a depleted-mantle component contaminated by recycled trench sediments (10–20%). When data showing the temporal and spatial patterns of magmatism are integrated, we observe a pattern of decreasing crustal recycling of the low-δ18O source over time, which ultimately culminated in a mantle-controlled flare-up. Our data demonstrate that spatial and temporal signals are intimately linked, and when evaluated together they provide important insights into the crustal architecture and the role of both stable and transient arc magmatic trends in Cordilleran batholiths. 
    more » « less
  5. Abstract The Wrangell Arc in Alaska (USA) and adjacent volcanic fields in the Yukon provide a long-term record of interrelations between flat-slab subduction of the Yakutat microplate, strike-slip translation along the Denali–Totschunda–Duke River fault system, and magmatism focused within and proximal to a Cretaceous suture zone. Detrital zircon (DZ) U-Pb (n = 2640) and volcanic lithic (DARL) 40Ar/39Ar dates (n = 2771) from 30 modern river sediment samples document the spatial-temporal evolution of Wrangell Arc magmatism, which includes construction of some of the largest Quaternary volcanoes on Earth. Mismatches in DZ and DARL date distributions highlight the impact of variables such as mineral fertility and downstream mixing/dilution on resulting provenance signatures. Geochronologic data document the initiation of Wrangell Arc magmatism at ca. 30–17 Ma along both sides of the Totschunda fault on the north flank of the Wrangell–St. Elias Mountains in Alaska, followed by southeastward progression of magmatism at ca. 17–10 Ma along the Duke River fault in the Yukon. This spatial-temporal evolution is attributable to dextral translation along intra-arc, strike-slip faults and a change in the geometry of the subducting slab (slab curling/steepening). Magmatism then progressed generally westward outboard of the Totschunda and Duke River faults at ca. 13–6 Ma along the southern flank of the Wrangell–St. Elias Mountains in Alaska and then northwestward from ca. 6 Ma to present in the western Wrangell Mountains. The 13 Ma to present spatial-temporal evolution is consistent with dextral translation along intra-arc, strike-slip faults and previously documented changes in plate boundary conditions, which include an increase in plate convergence rate and angle at ca. 6 Ma. Voluminous magmatism is attributed to shallow subduction-related flux melting and slab edge melting that is driven by asthenospheric upwelling along the lateral edge of the Yakutat flat slab. Magmatism was persistently focused within or adjacent to a remnant suture zone, which indicates that upper plate crustal heterogeneities influenced arc magmatism. Rivers sampled also yield subordinate Paleozoic–Mesozoic DZ and DARL age populations that reflect earlier episodes of magmatism within underlying accreted terranes and match magmatic flare-ups documented along the Cordilleran margin. 
    more » « less