Abstract Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations.
more »
« less
Decomposing the Critical Components of Flash Drought Using the Standardized Evaporative Stress Ratio
Flash droughts develop rapidly (∼1 month timescale) and produce significant ecological, agricultural, and socioeconomical impacts. Recent advances in our understanding of flash droughts have resulted in methods to identify and quantify flash drought events. However, few studies have been done to isolate the individual rapid intensification and drought components of flash drought, which could further determine their causes, evolution, and predictability. This study utilized the standardized evaporative stress ratio (SESR) to quantify individual components of flash drought from 1979 – 2019, using evapotranspiration (ET) and potential evapotranspiration (PET) data from the North American Regional Reanalysis (NARR) dataset. The temporal change in SESR was utilized to quantify the rapid intensification component of flash drought. The drought component was also determined using SESR and compared to the United States Drought Monitor. The results showed that SESR was able to represent the spatial coverage of drought well for regions east of the Rocky Mountains. Furthermore, the rapid intensification component agreed well with previous flash drought studies, with the overall climatology of rapid intensification events showing similar hotspots to the flash drought climatology east of the Rocky Mountains. The rapid intensification climatology suggested areas west of the Rocky Mountains experience rapid drying more often than east of the Rocky Mountains.
more »
« less
- Award ID(s):
- 1946093
- PAR ID:
- 10402288
- Date Published:
- Journal Name:
- SSRN Electronic Journal
- ISSN:
- 1556-5068
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flash droughts are characterized by a period of rapid intensification over sub-seasonal time scales that culminates in the rapid emergence of new or worsening drought impacts. This study presents a new flash drought intensity index (FDII) that accounts for both the unusually rapid rate of drought intensification and its resultant severity. The FDII framework advances our ability to characterize flash drought because it provides a more complete measure of flash drought intensity than existing classification methods that only consider the rate of intensification. The FDII is computed using two terms measuring the maximum rate of intensification (FD_INT) and average drought severity (DRO_SEV). A climatological analysis using soil moisture data from the Noah land surface model from 1979–2017 revealed large regional and interannual variability in the spatial extent and intensity of soil moisture flash drought across the US. Overall, DRO_SEV is slightly larger over the western and central US where droughts tend to last longer and FD_INT is ~75% larger across the eastern US where soil moisture variability is greater. Comparison of the FD_INT and DRO_SEV terms showed that they are strongly correlated (r = 0.82 to 0.90) at regional scales, which indicates that the subsequent drought severity is closely related to the magnitude of the rapid intensification preceding it. Analysis of the 2012 US flash drought showed that the FDII depiction of severe drought conditions aligned more closely with regions containing poor crop conditions and large yield losses than that captured by the intensification rate component (FD_INT) alone.more » « less
-
Abstract Rapid drought intensification, or flash droughts, is often driven by anomalous atmospheric ridging and can cause severe and complex impacts on water availability and agriculture, but the full range of variability of such events in terms of intensity and frequency is unknown. New tree‐ring reconstructions of May–July mid‐tropospheric ridging and soil moisture anomalies back to 1500 CE in the central United States—a hotspot for flash drought—suggest that over the last five centuries, anomalies in these two variables combined to indicate flash‐drought conditions in ∼17% of years and exceptionally severe flash drought in ∼4% of years, similar to frequencies in recent decades. However, over one‐third of all inferred exceptional flash droughts occurred since 1900, suggesting the 20th century was highly flash‐drought prone. These results may guide future work to diagnose the roles of external, oceanic, and land‐surface forcing of warm‐season atmospheric circulation and hydroclimate over North America.more » « less
-
Abstract. In recent years, extreme droughts in the United States have increased in frequency and severity, underlining a need to improve our understanding of vegetation resilience and adaptation. Flash droughts are extreme events marked by the rapid dry down of soils due to lack of precipitation, high temperatures, and dry air. These events are also associated with reduced preparation, response, and management time windows before and during drought, exacerbating their detrimental impacts on people and food systems. Improvements in actionable information for flash drought management are informed by atmospheric and land surface processes, including responses and feedbacks from vegetation. Phenologic state, or growth stage, is an important metric for modeling how vegetation modulates land–atmosphere interactions. Reduced stomatal conductance during drought leads to cascading effects on carbon and water fluxes. We investigate how uncertainty in vegetation phenology and stomatal regulation propagates through vegetation responses during drought and non-drought periods by coupling a land surface hydrology model to a predictive phenology model. We assess the role of vegetation in the partitioning of carbon, water, and energy fluxes during flash drought and carry out a comparison against drought and non-drought periods. We selected study sites in Kansas, USA, that were impacted by the flash drought of 2012 and that have AmeriFlux eddy covariance towers which provide ground observations to compare against model estimates. Results show that the compounding effects of reduced precipitation and high vapor pressure deficit (VPD) on vegetation distinguish flash drought from other drought and non-drought periods. High VPD during flash drought shuts down modeled stomatal conductance, resulting in rates of evapotranspiration (ET), gross primary productivity (GPP), and water use efficiency (WUE) that fall below those of average drought conditions. Model estimates of GPP and ET during flash drought decrease to rates similar to what is observed during the winter, indicating that plant function during drought periods is similar to that of dormant months. These results have implications for improving predictions of drought impacts on vegetation.more » « less
-
Flash drought often leads to devastating effects in multiple sectors and presents a unique challenge for drought early warning due to its sudden onset and rapid intensification. Existing drought monitoring and early warning systems are based on various hydrometeorological variables reaching thresholds of unusually low water content. Here, we propose a flash drought early warning approach based on spaceborne measurements of solar-induced chlorophyll fluorescence (SIF), a proxy of photosynthesis that captures plant response to multiple environmental stressors. Instead of negative SIF anomalies, we focus on the subseasonal trajectory of SIF and consider slower-than-usual increase or faster-than-usual decrease of SIF as an early warning for flash drought onset. To quantify the deviation of SIF trajectory from the climatological norm, we adopt existing formulas for a rapid change index (RCI) and apply the RCI analysis to spatially downscaled 8-d SIF data from GOME-2 during 2007–2018. Using two well-known flash drought events identified by the operational US Drought Monitor (in 2012 and 2017), we show that SIF RCI can produce strong predictive signals of flash drought onset with a lead time of 2 wk to 2 mo and can also predict drought recovery with several weeks of lead time. While SIF RCI shows great early warning potential, its magnitude diminishes after drought onset and therefore cannot reflect the current drought intensity. With its long lead time and direct relevance for agriculture, SIF RCI can support a global early warning system for flash drought and is especially useful over regions with sparse hydrometeorological data.more » « less
An official website of the United States government

