skip to main content


Title: Ultimate precision limit of noise sensing and dark matter search
Abstract

The nature of dark matter is unknown and calls for a systematical search. For axion dark matter, such a search relies on finding feeble random noise arising from the weak coupling between dark matter and microwave haloscopes. We model such process as a quantum channel and derive the fundamental precision limit of noise sensing. An entanglement-assisted strategy based on two-mode squeezed vacuum is thereby demonstrated optimal, while the optimality of a single-mode squeezed vacuum is found limited to the lossless case. We propose a “nulling” measurement (squeezing and photon counting) to achieve the optimal performances. In terms of the scan rate, even with 20-decibel of strength, single-mode squeezing still underperforms the vacuum limit which is achieved by photon counting on vacuum input; while the two-mode squeezed vacuum provides large and close-to-optimum advantage over the vacuum limit, thus more exotic quantum resources are no longer required. Our results highlight the necessity of entanglement assistance and microwave photon counting in dark matter search.

 
more » « less
Award ID(s):
2142882 2240641
NSF-PAR ID:
10402392
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
9
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hypothetical axion particle (of unknown mass) is a leading candidate for dark matter (DM). Many experiments search for axions with microwave cavities, where an axion may convert into a cavity photon, leading to a feeble excess in the output power of the cavity. Recent work [Backes et al., Nature 590, 238 (2021)] has demonstrated that injecting squeezed vacuum into the cavity can substantially accelerate the axion search. Here, we go beyond and provide a theoretical framework to leverage the benefits of quantum squeezing in a network setting consisting of many sensor cavities. By forming a local sensor network, the signals among the cavities can be combined coherently to boost the axion search. Furthermore, injecting multipartite entanglement across the cavities—generated by splitting a squeezed vacuum—enables a global noise reduction. We explore the performance advantage of such a local, entangled sensor network, which enjoys both coherence between the axion signals and entanglement between the sensors. Our analyses are pertinent to next-generation DM-axion searches aiming to leverage a network of sensors and quantum resources in an optimal way. Finally, we assess the possibility of using a more exotic quantum state, the Gottesman-Kitaev-Preskill (GKP) state. Despite a constant-factor improvement in the scan time relative to a single-mode squeezed state in the ideal case, the advantage of employing a GKP state disappears when a practical measurement scheme is considered. 
    more » « less
  2. Abstract

    Some of the most exotic properties of the quantum vacuum are predicted in ultrastrongly coupled photon–atom systems; one such property is quantum squeezing leading to suppressed quantum fluctuations of photons and atoms. This squeezing is unique because (1) it is realized in the ground state of the system and does not require external driving, and (2) the squeezing can be perfect in the sense that quantum fluctuations of certain observables are completely suppressed. Specifically, we investigate the ground state of the Dicke model, which describes atoms collectively coupled to a single photonic mode, and we found that the photon–atom fluctuation vanishes at the onset of the superradiant phase transition in the thermodynamic limit of an infinite number of atoms. Moreover, when a finite number of atoms is considered, the variance of the fluctuation around the critical point asymptotically converges to zero, as the number of atoms is increased. In contrast to the squeezed states of flying photons obtained using standard generation protocols with external driving, the squeezing obtained in the ground state of the ultrastrongly coupled photon–atom systems is resilient against unpredictable noise.

     
    more » « less
  3. Abstract

    Squeezed light has long been used to enhance the precision of a single optomechanical sensor. An emerging set of proposals seeks to use arrays of optomechanical sensors to detect weak distributed forces, for applications ranging from gravity-based subterranean imaging to dark matter searches; however, a detailed investigation into the quantum-enhancement of this approach remains outstanding. Here, we propose an array of entanglement-enhanced optomechanical sensors to improve the broadband sensitivity of distributed force sensing. By coherently operating the optomechanical sensor array and distributing squeezing to entangle the optical fields, the array of sensors has a scaling advantage over independent sensors (i.e.,$$\sqrt{M}\to M$$MM, whereMis the number of sensors) due to coherence as well as joint noise suppression due to multi-partite entanglement. As an illustration, we consider entanglement-enhancement of an optomechanical accelerometer array to search for dark matter, and elucidate the challenge of realizing a quantum advantage in this context.

     
    more » « less
  4. Abstract We propose a quantum-enhanced lidar system to estimate a target’s radial velocity, which employs squeezed and frequency-entangled signal and idler beams. We compare its performance against a classical protocol using a coherent state with the same pulse duration and energy, showing that quantum resources provide a precision enhancement in the estimation of the velocity of the object. We identify three distinct parameter regimes characterized by the amount of squeezing and frequency entanglement. In two of them, a quantum advantage exceeding the standard quantum limit is achieved assuming no photon losses. Additionally, we show that an optimal measurement to attain these results in the lossless case is frequency-resolved photon counting. Finally, we consider the effect of photon losses for the high-squeezing regime, which leads to a constant factor quantum advantage higher than 3 dB in the variance of the estimator, given a roundtrip lidar-to-target-to-lidar transmissivity larger than 50%. 
    more » « less
  5. Experimental limitations such as optical loss and noise have prevented entanglement-enhanced measurements from demonstrating a significant quantum advantage in sensitivity. Holland-Burnett entangled states can mitigate these limitations and still present a quantum advantage in sensitivity. Here we model a fiber-based Mach-Zehnder interferometer with internal loss, detector efficiency, and external phase noise and without pure entanglement. This model features a practical fiber source that transforms the two-mode squeezed vacuum (TMSV) into Holland-Burnett entangled states. We predict that a phase sensitivity 28% beyond the shot noise limit is feasible with current technology. Simultaneously, a TMSV source can provide about 25 times more photon flux than other entangled sources. This system will make fiber-based quantum-enhanced sensing accessible and practical for remote sensing and probing photosensitive materials. 
    more » « less