skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Moduli Spaces of Quadratic Maps: Arithmetic and Geometry
Abstract We establish an implication between two long-standing open problems in complex dynamics. The roots of the $$n$$th Gleason polynomial $$G_{n}\in{\mathbb{Q}}[c]$$ comprise the $$0$$-dimensional moduli space of quadratic polynomials with an $$n$$-periodic critical point. $$\operatorname{Per}_{n}(0)$$ is the $$1$$-dimensional moduli space of quadratic rational maps on $${\mathbb{P}}^{1}$$ with an $$n$$-periodic critical point. We show that if $$G_{n}$$ is irreducible over $${\mathbb{Q}}$$, then $$\operatorname{Per}_{n}(0)$$ is irreducible over $${\mathbb{C}}$$. To do this, we exhibit a $${\mathbb{Q}}$$-rational smooth point on a projective completion of $$\operatorname{Per}_{n}(0)$$, using the admissible covers completion of a Hurwitz space. In contrast, the Uniform Boundedness Conjecture in arithmetic dynamics would imply that for sufficiently large $$n$$, $$\operatorname{Per}_{n}(0)$$ itself has no $${\mathbb{Q}}$$-rational points.  more » « less
Award ID(s):
1928930
PAR ID:
10529232
Author(s) / Creator(s):
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let  ρ ¯ : G Q → GSp 4 ⁡ ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the  3 3 -torsion of a principally polarized abelian surface  A / Q A/\mathbf {Q} . We prove that the moduli space  A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces  B / Q B/\mathbf {Q} admitting a symplectic isomorphism  B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over  Q \mathbf {Q} when  ρ ¯ \overline {\rho } is surjective, even though it is both rational over  C \mathbf {C} and unirational over  Q \mathbf {Q} via a map of degree  6 6 . 
    more » « less
  2. We examine correlations of the Möbius function over $$\mathbb{F}_{q}[t]$$ with linear or quadratic phases, that is, averages of the form 1 $$\begin{eqnarray}\frac{1}{q^{n}}\mathop{\sum }_{\deg f0$$ if $$Q$$ is linear and $$O(q^{-n^{c}})$$ for some absolute constant $c>0$ if $$Q$$ is quadratic. The latter bound may be reduced to $$O(q^{-c^{\prime }n})$$ for some $$c^{\prime }>0$$ when $Q(f)$ is a linear form in the coefficients of $$f^{2}$$ , that is, a Hankel quadratic form, whereas, for general quadratic forms, it relies on a bilinear version of the additive-combinatorial Bogolyubov theorem. 
    more » « less
  3. Abstract Let $$E$$ be an elliptic curve defined over $${\mathbb{Q}}$$ of conductor $$N$$, $$p$$ an odd prime of good ordinary reduction such that $E[p]$ is an irreducible Galois module, and $$K$$ an imaginary quadratic field with all primes dividing $Np$ split. We prove Iwasawa main conjectures for the $${\mathbb{Z}}_{p}$$-cyclotomic and $${\mathbb{Z}}_{p}$$-anticyclotomic deformations of $$E$$ over $${\mathbb{Q}}$$ and $K,$ respectively, dispensing with any of the ramification hypotheses on $E[p]$ in previous works. The strategy employs base change and the two-variable zeta element associated to $$E$$ over $$K$$, via which the sought after main conjectures are deduced from Wan’s divisibility towards a three-variable main conjecture for $$E$$ over a quartic CM field containing $$K$$ and certain Euler system divisibilities. As an application, we prove cases of the two-variable main conjecture for $$E$$ over $$K$$. The aforementioned one-variable main conjectures imply the $$p$$-part of the conjectural Birch and Swinnerton-Dyer formula for $$E$$ if $$\operatorname{ord}_{s=1}L(E,s)\leq 1$$. They are also an ingredient in the proof of Kolyvagin’s conjecture and its cyclotomic variant in our joint work with Grossi [1]. 
    more » « less
  4. null (Ed.)
    Let $$E/\mathbb {Q}$$ be a number field of degree $$n$$ . We show that if $$\operatorname {Reg}(E)\ll _n |\!\operatorname{Disc}(E)|^{1/4}$$ then the fraction of class group characters for which the Hecke $$L$$ -function does not vanish at the central point is $$\gg _{n,\varepsilon } |\!\operatorname{Disc}(E)|^{-1/4-\varepsilon }$$ . The proof is an interplay between almost equidistribution of Eisenstein periods over the toral packet in $$\mathbf {PGL}_n(\mathbb {Z})\backslash \mathbf {PGL}_n(\mathbb {R})$$ associated to the maximal order of $$E$$ , and the escape of mass of the torus orbit associated to the trivial ideal class. 
    more » « less
  5. Abstract We construct a family of PBWD (Poincaré-Birkhoff-Witt-Drinfeld) bases for the positive subalgebras of quantum loop algebras of type $$B_{n}$$ and $$G_{2}$$, as well as their Lusztig and RTT (for type $$B_{n}$$ only) integral forms, in the new Drinfeld realization. We also establish a shuffle algebra realization of these $${\mathbb {Q}}(v)$$-algebras (proved earlier in [26] by completely different tools) and generalize the latter to the above $${{\mathbb {Z}}}[v,v^{-1}]$$-forms. The rational counterparts provide shuffle algebra realizations of positive subalgebras of type $$B_{n}$$ and $$G_{2}$$ Yangians and their Drinfeld-Gavarini duals. All of this generalizes the type $$A_{n}$$ results of [30]. 
    more » « less