skip to main content

Title: The demise of Monechma: new combinations and a new classification in the resurrected genera Meiosperma and Pogonospermum (Acanthaceae)
Summary Recent molecular phylogenetic results have demonstrated that Monechma s.l., a group of plants with ecological importance in the savanna and succulent biomes of sub-Saharan Africa, is polyphyletic with two discrete lineages recognisable. In the present work, we recognise Monechma Groups I and II at the generic rank, which can be distinguished by differences in inflorescence characteristics and seed morphology. The nomenclatural implications of these findings are investigated. The lectotype of Monechma , M. bracteatum Hochst., is a part of a small lineage of plants closely allied to Justicia L. sect. Harnieria (Solms) Benth. for which the earliest valid name is found to be Meiosperma Raf. Hence, Monechma is synonymised within Meiosperma , which comprises six accepted species and two undescribed taxa. The majority of species of former Monechma s.l. are resolved within the second lineage for which the only validly published generic name is Pogonospermum Hochst. This resurrected genus comprises 34 accepted species plus two undescribed taxa. Pogonospermum displays considerable morphological variation and is here subdivided into six sections based primarily on differences in plant habit, inflorescence form, calyx, bract and bracteole venation, and seed indumentum. The new combinations and new sections are validated, and seven accepted species names are lectotypified.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Kew Bulletin
Page Range / eLocation ID:
249 to 270
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Monechma Hochst. s.l. (Acanthaceae) is a diverse and ecologically important plant group in sub-Saharan Africa, well represented in the fire-prone savanna biome and with a striking radiation into the non-fire-prone succulent biome in the Namib Desert. We used RADseq to reconstruct evolutionary relationships within Monechma s.l. and found it to be non-monophyletic and composed of two distinct clades: Group I comprises eight species resolved within the Harnieria clade, whilst Group II comprises 35 species related to the Diclipterinae clade. Our analyses suggest the common ancestors of both clades of Monechma occupied savannas, but both of these radiations (~13 mya crown ages) pre-date the currently accepted origin of the savanna biome in Africa, 5–10 mya. Diversification in the succulent biome of the Namib Desert is dated as beginning only ~1.9 mya. Inflorescence and seed morphology are found to distinguish Groups I and II and related taxa in the Justicioid lineage. Monechma Group II is morphologically diverse, with variation in some traits related to ecological diversification including plant habit. The present work enables future research on these important lineages and provides evidence towards understanding the biogeographical history of continental Africa. 
    more » « less
  2. Abstract Background and Aims Cycads are regarded as an ancient lineage of living seed plants, and hold important clues to understand the early evolutionary trends of seed plants. The molecular phylogeny and spatio-temporal diversification of one of the species-rich genera of cycads, Macrozamia, have not been well reconstructed. Methods We analysed a transcriptome dataset of 4740 single-copy nuclear genes (SCGs) of 39 Macrozamia species and two outgroup taxa. Based on concatenated (maximum parsimony, maximum likelihood) and multispecies coalescent analyses, we first establish a well-resolved phylogenetic tree of Macrozamia. To identify cyto-nuclear incongruence, the plastid protein coding genes (PCGs) from transcriptome data are extracted using the software HybPiper. Furthermore, we explore the biogeographical history of the genus and shed light on the pattern of floristic exchange between three distinct areas of Australia. Six key diagnostic characters are traced on the phylogenetic framework using two comparative methods, and infra-generic classification is investigated. Key Results The tree topologies of concatenated and multi-species coalescent analyses of SCGs are mostly congruent with a few conflicting nodes, while those from plastid PCGs show poorly supported relationships. The genus contains three major clades that correspond to their distinct distributional areas in Australia. The crown group of Macrozamia is estimated to around 11.80 Ma, with a major expansion in the last 5–6 Myr. Six morphological characters show homoplasy, and the traditional phenetic sectional division of the genus is inconsistent with this current phylogeny. Conclusions This first detailed phylogenetic investigation of Macrozamia demonstrates promising prospects of SCGs in resolving phylogenetic relationships within cycads. Our study suggests that Macrozamia, once widely distributed in Australia, underwent major extinctions because of fluctuating climatic conditions such as cooling and mesic biome disappearance in the past. The current close placement of morphologically distinct species in the phylogenetic tree may be related to neotenic events that occurred in the genus. 
    more » « less
  3. null (Ed.)
    Haraldiophyllum hawaiiense sp. nov. is described as a new mesophotic alga and a new genus record for the Hawaiian Islands. Six specimens were collected at a depth range of 81-93 m from Papahānaumokuākea Marine National Monument, and their morphology investigated, as well as molecular phylogenetic analyses of the plastidial ribulose-1,5- bisphosphate carboxylase–oxygenase large-subunit (rbcL) gene and a concatenated alignment of rbcL and nuclear large-subunit rRNA gene (LSU) sequences. Phylogenetic analyses supported H. hawaiiense sp. nov. as a distinct lineage within the genus Haraldiophyllum, and sister to a large clade containing the type species, H. bonnemaisonii, as well as H. crispatum and an undescribed European specimen. The six Hawaiian specimens were shown to be identical, but unique among other species of the genus as well as the recently segregated genus Neoharaldiophyllum, which comprises half of the species previously included in Haraldiophyllum. The vegetative morphology of H. hawaiiense sp. nov. resembles Neoharaldiophyllum udoense (formerly H. udoensis); however, no female or post-fertilization structures were found in the Hawaiian specimens to allow a more comprehensive comparison. The molecular phylogenies demonstrate that Haraldiophyllum is paraphyletic, suggesting either that the Myriogrammeae tribe includes undescribed genera, including Haraldiophyllum sensu stricto, or that Neoharaldiophyllum species should be transferred into the genus Haraldiophyllum. However, based on vegetative morphology and molecular analyses, and pending resolution of this taxonomic issue, the Hawaiian specimens are placed within the genus Haraldiophyllum. This new record for the Hawaiian Islands highlights the novel biodiversity from mesophotic depths, reaffirming the need for further investigation into the biodiversity of Mesophotic Coral Ecosystems. 
    more » « less
  4. Portunoidea is a diverse lineage of ecologically and economically important marine crabs comprising 8 families and 14 subfamilies. Closely related portunid subfamilies Caphyrinae and Thalamitinae constitute some of this group’s greatest morphological and taxonomic diversity, and are the only known lineages to include symbiotic taxa. Emergence of symbiosis in decapods remains poorly studied and portunoid crabs provide an interesting, but often overlooked example. Yet the paucity of molecular phylogenetic data available for Portunoidea makes it challenging to investigate the evolution and systematics of the group. Phylogenetic analyses, though limited, suggest that many putative portunoid taxa are para- or polyphyletic. Here I augment existing molecular data—significantly increasing taxon sampling of Caphyrinae, Thalamitinae, and several disparate portunoid lineages—to investigate the phylogenetic origin of symbiosis within Portunoidea and reevaluate higher- and lower-level portunoid classifications. Phylogenetic analyses were carried out on sequences of H3, 28S rRNA, 16S rRNA, and CO1 for up to 168 portunoid taxa; this included, for the first time, molecular data from the genera Atoportunus , Brusinia , Caphyra , Coelocarcinus , Gonioinfradens , Raymanninus , and Thalamonyx . Results support the placement of all symbiotic taxa ( Caphyra , Lissocarcinus , and two Thalamita ) in a single clade derived within the thalamitine genus Thalamita . Caphyrina Paulson, 1875, nom. trans. is recognized here as a subtribe within the subfamily Thalamitinae. Results also support the following taxonomic actions: Cronius is reclassified as a thalamitine genus; Thalamonyx is reestablished as a valid genus; Goniosupradens is raised to the generic rank; and three new genera ( Zygita gen. nov., Thranita gen. nov., and Trierarchus gen. nov.) are described to accommodate some Thalamita s.l. taxa rendered paraphyletic by Caphyrina. A new diagnosis of Thalamitinae is provided. Results also support a more conservative classification of Portunoidea comprising three instead of eight extant families: Geryonidae (Geryonidae + Ovalipidae; new diagnosis provided), Carcinidae (Carcinidae + Pirimelidae + Polybiidae + Thiidae + Coelocarcinus ; new diagnosis provided) and Portunidae. Finally, 16s rRNA data suggests family Brusiniidae might not be a portunoid lineage. 
    more » « less
  5. null (Ed.)
    Coniochaeta (Coniochaetaceae, Ascomycota) is a diverse genus that includes a striking richness of undescribed species with endophytic lifestyles, especially in temperate and boreal plants and lichens. These endophytes frequently represent undescribed species that can clarify evolutionary relationships and trait evolution within clades of previously classified fungi. Here we extend the geographic, taxonomic, and host sampling presented in a previous analysis of the clade containing Coniochaeta endophytica, a recently described species occurring as an endophyte from North America; and C. prunicola, associated with necroses of stonefruit trees in South Africa. Our multi-locus analysis and examination of metadata for endophyte strains housed in the Robert L. Gilbertson Mycological Herbarium at the University of Arizona (ARIZ) (1) expands the geographic range of C. endophytica across a wider range of the USA than recognized previously; (2) shows that the ex-type of C. prunicola (CBS 120875) forms a well-supported clade with endophytes of native hosts in North Carolina and Michigan, USA; (3) reveals that the ex-paratype for C. prunicola (CBS 121445) forms a distinct clade with endophytes from North Carolina and Russia, is distinct morphologically from the other taxa considered here, and is described herein as Coniochaeta lutea; and (4) describes a new species, Coniochaeta palaoa, here identified as an endophyte of multiple plant lineages in the highlands and piedmont of North Carolina. Separation of CBS 120875 and CBS 121445 into C. prunicola sensu stricto and C. lutea is consistent with previously described genomic differences between these isolates, and morphological and functional differences among the four species (C. endophytica, C. prunicola, C. palaoa, and C. lutea) underscore the phylogenetic relationships described here. The resolving power of particular loci and the emerging perspective on the host- and geographic range of Coniochaeta and the C. endophytica / C. prunicola clade are discussed. 
    more » « less