skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Binocular fringe projection profilometry for the metrology of meter-scale optical surfaces
Demand for better quality, larger quantity, and size of astronomical telescopes from visible to radio frequencies is increasing. More rapid, efficient, and adaptable manufacturing processes are needed to support the needs of growing science and engineering communities in these fields. To aid the development and execution of these new processes, a flexible, accurate, and low-cost metrology system is needed. This paper outlines a variety of fringe projection profilometry (FPP) that has demonstrated high accuracy over large areas, making it a critical tool for manufacturing steel molds for forming primary reflectors and shape verification of the reflectors themselves used for radio astronomy.  more » « less
Award ID(s):
2009384
PAR ID:
10402729
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Continuum
Volume:
2
Issue:
4
ISSN:
2770-0208
Format(s):
Medium: X Size: Article No. 697
Size(s):
Article No. 697
Sponsoring Org:
National Science Foundation
More Like this
  1. Ghenaiet, Adel (Ed.)
    In the design of a large deployable mesh reflector, high surface accuracy is one of ultimate goals since it directly determines overall performance of the reflector. Therefore, evaluation of surface accuracy is needed in many cases of design and analysis of large deployable mesh reflectors. The surface accuracy is usually specified as root-mean-square error, which measures deviation of a mesh geometry from a desired working surface. In this paper, methods of root-mean-square error calculation for large deployable mesh reflectors are reviewed. Concept of reflector gain, which describes reflector performance, and its relationship with the root-mean-square error is presented. Approaches to prediction or estimation of root-mean-square error in preliminary design of a large deployable mesh reflector are shown. Three methods of root-mean-square error calculation for large deployable mesh reflectors, namely, the nodal deviation root-mean-square error, the best-fit surface root-mean-square error, and the direct root-mean-square error, are presented. Concept of effective region is introduced. An adjusted calculation of root-mean-square error is suggested when the concept of effective region is involved. Finally, these reviewed methods of root-mean-square error calculation are applied to surface accuracy evaluation of a two-facet mesh geometry, a center-feed mesh reflector, and an offset-feed mesh reflector for demonstration and comparison. 
    more » « less
  2. This paper presents full-wave simulation results of a reflector-reflectarray hybrid antenna used as a spatial beamformer for mitigating interference in radio astronomy applications. Such antennas employ fixed reflectors with electronically tunable reflectarray along their rim to dynamically form nulls in the direction(s) of interferer(s). Results from realistic models of such antenas demonstrate their potential in producing nulls and potentially effectiveness in mitigating interference from satellites with the field of view of the instrument. 
    more » « less
  3. Marine stratocumulus clouds are the “global reflectors,” sharply contrasting with the underlying dark ocean surface and exerting a net cooling on Earth’s climate. The magnitude of this cooling remains uncertain in part owing to the averaged representation of microphysical processes, such as the droplet-to-drizzle transition in global climate models (GCMs). Current GCMs parameterize cloud droplet size distributions as broad, cloud-averaged gammas. Using digital holographic measurements of discrete stratocumulus cloud volumes, we found cloud droplet size distributions to be narrower at the centimeter scale, never resembling the cloud average. These local distributions tended to form pockets of similar-looking cloud regions, each characterized by a size distribution shape that is diluted to varying degrees. These observations open the way for new modeling representations of microphysical processes. 
    more » « less
  4. Additive manufacturing (AM) has impacted the manufacturing of complex three-dimensional objects in multiple materials for a wide array of applications. However, additive manufacturing, as an upcoming field, lacks automated and specific design rules for different AM processes. Moreover, the selection of specific AM processes for different geometries requires expert knowledge, which is difficult to replicate. An automated and data-driven system is needed that can capture the AM expert knowledge base and apply it to 3D-printed parts to avoid manufacturability issues. This research aims to develop a data-driven system for AM process selection within the design for additive manufacturing (DFAM) framework for Industry 4.0. A Genetic and Evolutionary Feature Weighting technique was optimized using 3D CAD data as an input to identify the optimal AM technique based on several requirements and constraints. A two-stage model was developed wherein the stage 1 model displayed average accuracies of 70% and the stage 2 model showed higher average accuracies of up to 97.33% based on quantitative feature labeling and augmentation of the datasets. The steady-state genetic algorithm (SSGA) was determined to be the most effective algorithm after benchmarking against estimation of distribution algorithm (EDA) and particle swarm optimization (PSO) algorithms, respectively. The output of this system leads to the identification of optimal AM processes for manufacturing 3D objects. This paper presents an automated design for an additive manufacturing system that is accurate and can be extended to other 3D-printing processes. 
    more » « less
  5. Abstract The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a drift scan radio telescope operating across the 400–800 MHz band. CHIME is located at the Dominion Radio Astrophysical Observatory near Penticton, BC, Canada. The instrument is designed to map neutral hydrogen over the redshift range 0.8–2.5 to constrain the expansion history of the universe. This goal drives the design features of the instrument. CHIME consists of four parallel cylindrical reflectors, oriented north–south, each 100 m × 20 m and outfitted with a 256-element dual-polarization linear feed array. CHIME observes a two-degree-wide stripe covering the entire meridian at any given moment, observing three-quarters of the sky every day owing to Earth’s rotation. An FX correlator utilizes field-programmable gate arrays and graphics processing units to digitize and correlate the signals, with different correlation products generated for cosmological, fast radio burst, pulsar, very long baseline interferometry, and 21 cm absorber back ends. For the cosmology back end, the N feed 2 correlation matrix is formed for 1024 frequency channels across the band every 31 ms. A data receiver system applies calibration and flagging and, for our primary cosmological data product, stacks redundant baselines and integrates for 10 s. We present an overview of the instrument, its performance metrics based on the first 3 yr of science data, and we describe the current progress in characterizing CHIME’s primary beam response. We also present maps of the sky derived from CHIME data; we are using versions of these maps for a cosmological stacking analysis, as well as for investigation of Galactic foregrounds. 
    more » « less