skip to main content


Title: Effects of state filling and localization on chemical expansion in praseodymium-oxide perovskites
In oxide materials, an increase in oxygen vacancy concentration often results in lattice expansion, a phenomenon known as chemical expansion that can introduce detrimental stresses and lead to potential device failure. One factor often implicated in the chemical expansion of materials is the degree of localization of the multivalent cation electronic states. When an oxygen is removed from the lattice and a vacancy forms, it is believed that the two released electrons reduce multivalent cations and expand the lattice, with more localized cation states resulting in larger expansion. In this work, we computationally and experimentally studied the chemical expansion of two Pr-based perovskites that exhibit ultra-low chemical expansion, PrGa 1− x Mg x O 3− δ and BaPr 1− x Y x O 3− δ , and their parent compounds PrGaO 3− δ and BaPrO 3− δ . Using density functional theory, the degree of localization of the Pr-4f electrons was varied by adjusting the Hubbard U parameter. We find that the relationship between Pr-4f electron localization and chemical expansion exhibits more complexity than previously established. This relationship depends on the nature of the states filled by the two electrons, which may not necessarily involve the reduction of Pr. F ′-center defects can form if the reduction of Pr is unfavorable, leading to smaller chemical expansions. If hole states are present in the material, the states filled by the electrons can be Pr-4f and/or O-2p hole states depending on the degree of Pr-4f localization. The O-2p holes are more delocalized than the Pr-4f holes, resulting in smaller chemical expansions when the O-2p holes are filled. X-ray photoelectron spectroscopy reveals low concentrations of Pr 4+ in PrGa 0.9 Mg 0.1 O 3− δ and BaPr 0.9 Y 0.1 O 3− δ , supporting the possible role of O-2p holes in the low chemical expansions exhibited by these materials. This work highlights the non-trivial effects of electron localization on chemical expansion, particularly when hole states are present, pointing to design strategies to tune the chemical expansion of materials.  more » « less
Award ID(s):
1945482
NSF-PAR ID:
10402816
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry A
Volume:
11
Issue:
8
ISSN:
2050-7488
Page Range / eLocation ID:
4045 to 4056
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extreme ultraviolet (XUV) light sources based on high harmonic generation are enabling the development of novel spectroscopic methods to help advance the frontiers of ultrafast science and technology. In this account we discuss the development of XUV-RA spectroscopy at near grazing incident reflection geometry and highlight recent applications of this method to study ultrafast electron dynamics at surfaces. Measuring core-to-valence transitions with broadband, femtosecond pulses of XUV light extends the benefits of x-ray absorption spectroscopy to a laboratory tabletop by providing a chemical fingerprint of materials, including the ability to resolve individual elements with sensitivity to oxidation state, spin state, carrier polarity, and coordination geometry. Combining this chemical state sensitivity with femtosecond time resolution provides new insight into the material properties that govern charge carrier dynamics in complex materials. It is well known that surface dynamics differ significantly from equivalent processes in bulk materials, and that charge separation, trapping, transport, and recombination occurring uniquely at surfaces governs the efficiency of numerous technologically relevant processes spanning photocatalysis, photovoltaics, and information storage and processing. Importantly, XUV-RA spectroscopy at near grazing angle is also surface sensitive with a probe depth of 3 nm, providing a new window into electronic and structural dynamics at surfaces and interfaces. Here we highlight the unique capabilities and recent applications of XUVRA spectroscopy to study photo-induced surface dynamics in metal oxide semiconductors, including photocatalytic oxides (Fe2O3, Co3O4 NiO, and CuFeO2) as well as photoswitchable magnetic oxide (CoFe2O4). We first compare the ultrafast electron self-trapping rates via small polaron formation at the surface and bulk of Fe2O3 where we note that the energetics and kinetics of this process differ significantly at the surface. Additionally, we demonstrate the ability to systematically tune this kinetics by molecular functionalization, thereby, providing a route to control carrier transport at surfaces. We also measure the spectral signatures of charge transfer excitons with site specific localization of both electrons and holes in a series of transition metal oxide semiconductors (Fe2O3, NiO, Co3O4). The presence of valence band holes probed at the oxygen L1-edge confirms a direct relationship between the metal-oxygen bond covalency and water oxidation efficiency. For a mixed metal oxide CuFeO2 in the layered delafossite structure, XUV-RA reveals that the sub-picosecond hole thermalization from O 2p to Cu 3d states of CuFeO2 leads to the spatial separation of electrons and holes, resulting in exceptional photocatalytic performance for H2 evolution and CO2 reduction of this material. Finally, we provide an example to show the ability of XUV-RA to probe spin state specific dynamics in a the photo-switchable ferrimagnet, cobalt ferrite (CoFe2O4). This study provides a detailed understating of ultrafast spin switching in a complex magnetic material with site-specific resolution. In summary, the applications of XUV-RA spectroscopy demonstrated here illustrate the current abilities and future promise of this method to extend molecule-level understanding from well-defined photochemical complexes to complex materials so that charge and spin dynamics at surfaces can be tuned with the precision of molecular photochemistry. 
    more » « less
  2. Both aliovalent doping and the charge state of multivalent lattice ions determine the oxygen non-stoichiometry ( δ ) of mixed ionic and electronic conductors (MIECs). Unfortunately, it has been challenging for both modeling and experiments to determine the multivalent ion charge states in MIECs. Here, the Fe charge state distribution was determined for various compositions and phases of the MIEC La 1−x Sr x FeO 3−δ (LSF) using the spin-polarized density functional theory (DFT)-predicted magnetic moments on Fe. It was found that electron occupancy and crystal-field-splitting-induced differences between the Fe 3d-orbitals of the square pyramidally coordinated, oxygen-vacancy-adjacent Fe atoms and the octahedrally-coordinated, oxygen-vacancy-distant-Fe atoms determined whether the excess electrons produced during oxygen vacancy formation remained localized at the first nearest neighbor Fe atoms (resulting in small oxygen vacancy polarons, as in LaFeO 3 ) or were distributed to the second-nearest-neighbor Fe atoms (resulting in large oxygen vacancy polarons, as in SrFeO 3 ). The progressively larger polaron size and anisotropic shape changes with increasing Sr resulted in increasing oxygen vacancy interactions, as indicated by an increase in the oxygen vacancy formation energy above a critical δ threshold. This was consistent with experimental results showing that Sr-rich LSF and highly oxygen deficient compositions are prone to oxygen-vacancy-ordering-induced phase transformations, while Sr-poor and oxygen-rich LSF compositions are not. Since oxygen vacancy induced phase transformations cause a decrease in the mobile oxygen vacancy site fraction ( X ), both δ and X were predicted as a function of temperature and oxygen partial pressure, for multiple LSF compositions and phases using a combined thermodynamics and DFT approach. 
    more » « less
  3. null (Ed.)
    A series of cerium( iv ) mixed-ligand guanidinate–amide complexes, {[(Me 3 Si) 2 NC(N i Pr) 2 ] x Ce IV [N(SiMe 3 ) 2 ] 3−x } + ( x = 0–3), was prepared by chemical oxidation of the corresponding cerium( iii ) complexes, where x = 1 and 2 represent novel complexes. The Ce( iv ) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy ( n f ) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce( iv ) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce( iv ) oxidation state with more guanidinate ligands. Moreover, the Ce( iv ) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals that were close in energy to the unoccupied Ce 4f orbitals. However, the incorporation of sterically hindered guanidinate ligands inhibited optimal overlaps between Ce 5d and ligand N 2p orbitals. As a result, there was an overall decrease of ligand-to-metal donation and a less stabilized Ce( iv ) oxidation state, while at the same time, more of the donated electron density ended up in the 4f shell. The results indicate that incorporating guanidinate ligands into Ce( iv ) complexes gives rise to intense charge transfer bands and noteworthy electronic structures, providing insights into the stabilization of tetravalent lanthanide oxidation states. 
    more » « less
  4. null (Ed.)
    Structural evolution in functional materials is a physicochemical phenomenon, which is important from a fundamental study point of view and for its applications in magnetism, catalysis, and nuclear waste immobilization. In this study, we used x-ray diffraction and Raman spectroscopy to examine the Gd2Hf2O7 (GHO) pyrochlore, and we showed that it underwent a thermally induced crystalline phase evolution. Superconducting quantum interference device measurements were carried out on both the weakly ordered pyrochlore and the fully ordered phases. These measurements suggest a weak magnetism for both pyrochlore phases. Spin density calculations showed that the Gd3+ ion has a major contribution to the fully ordered pyrochlore magnetic behavior and its cation antisite. The origin of the Gd magnetism is due to the concomitant shift of its spin-up 4f orbital states above the Fermi energy and its spin-down states below the Fermi energy. This picture is in contrast to the familiar Stoner model used in magnetism. The ordered pyrochlore GHO is antiferromagnetic, whereas its antisite is ferromagnetic. The localization of the Gd-4f orbitals is also indicative of weak magnetism. Chemical bonding was analyzed via overlap population calculations: These analyses indicate that Hf-Gd and Gd-O covalent interactions are destabilizing, and thus, the stabilities of these bonds are due to ionic interactions. Our combined experimental and computational analyses on the technologically important pyrochlore materials provide a basic understanding of their structure, bonding properties, and magnetic behaviors. 
    more » « less
  5. We use density functional theory (DFT) calculations to show that oxygen vacancies (vO) and mobility induce noncentrosymmetric polar structures in SrTi1−x−yFexCoyO3−δ (STFC, x=y=0.125) with δ={0.125,0.25}, enhance the saturation magnetization, and give rise to large changes in the electric polarization |ΔP|. We present an intuitive set of rules to describe the properties of STFC, which are based on the interplay between (Co/Fe)-vO defects, magnetic cation coordination, and topological vacancy disorder. STFC structures consist of layered crystals with sheets of linearly organized O4,5,6-coordinated Fe–Co pairs, sandwiched with layers of O5-coordinated Ti. (Co/Fe)-vO defects are the source of crystal distortions, cation off-centering and bending of the oxygen octahedra which, considering the charge redistribution mediated by vO and the cations’ electronegativity and valence states, triggers an effective electric polarization. Oxygen migration for δ=0.125 leads to |ΔP|>∼10 µC/cm2 due to quantum-of-polarization differences between δ=0.125 structures. Increasing the oxygen deficiency to δ=0.25 yields |ΔP|, the O migration of which resolved polarization for δ=0.25 is >∼3 µC/cm2. Magnetism is dominated by the Fe,Co spin states for δ=0.125, and there is a contribution from Ti magnetic moments (∼1 μB) for δ=0.25. Magnetic and electric order parameters change for variations of δ or oxygen migration for a given oxygen deficiency. Our results capture characteristics observed in the end members of the series SrTi(Co,Fe)O3, and suggest the existence of a broader set of rules for oxygen-deficient multiferroic oxides. 
    more » « less