skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 1, 2026

Title: Erbium and praseodymium doped lithium tantalate electronic structure and metal-oxygen bonding analyses
Electronic information and optical properties coupled with the Quantum Theory of Atoms in Molecules (QTAIM) and Electron Localization Function (ELF) analyses are used to elucidate the erbium (Er+3) and praseodymium (Pr+3) intraband f–f transitions in the lithium tantalate (LiTaO3) doped and co-doped configurations and the metal-oxygen bonding. The generalized gradient approximation calculations show that the Er+3- and Pr+3-4f bands appear closer to the conduction band bottom for Er+3 and Pr+3 at the Li sites and to the valance band top for Er+3 at the Ta sites. However, the corresponding hybrid functional calculations for the dopants at the Li site show that the Er+3 and Pr+3-4f bands spread in energy, which agrees with the observed intraband f–f transitions from the optical properties calculations. QTAIM shows that Ta-, Er+3-, and Pr+3-O bonding is incipient covalent for all configurations of this work. The absence of ELF in the metal-O regions aligns with QTAIM on the lack of strong covalent bonding in these compounds. This complementary insight highlights how weakly interacting metal-O atoms lead to delocalized electron density, a feature that influences the physical, electronic, and chemical behavior of the LiTaO3.  more » « less
Award ID(s):
2112650
PAR ID:
10591730
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Materials Today Communications
Volume:
44
Issue:
C
ISSN:
2352-4928
Page Range / eLocation ID:
112047
Subject(s) / Keyword(s):
LiTaO3 Co-doping DFT QTAIM ELF Er+3 Pr+3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The concept of metalla-aromaticity proposed by Thorn–Hoffmann ( Nouv. J. Chim . 1979, 3, 39) has been expanded to organometallic molecules of transition metals that have more than one independent electron-delocalized system. Lanthanides, with highly contracted 4f atomic orbitals, are rarely found in multiply aromatic systems. Here we report the discovery of a doubly aromatic triatomic lanthanide-boron molecule PrB 2 − based on a joint photoelectron spectroscopy and quantum chemical investigation. Global minimum structural searches reveal that PrB 2 − has a C 2v triangular structure with a paramagnetic triplet 3 B 2 electronic ground state, which can be viewed as featuring a trivalent Pr(III,f 2 ) and B 2 4− . Chemical bonding analyses show that this cyclo-PrB 2 − species is the smallest 4f-metalla-aromatic system exhibiting σ and π double aromaticity and multiple Pr–B bonding characters. It also sheds light on the formation of the rare B 2 4− tetraanion by the high-lying 5d orbitals of the 4f-elements, completing the isoelectronic B 2 4− , C 2 2− , N 2 , and O 2 2+ series. 
    more » « less
  2. This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2- t BuNO)C 6 H 4 CH 2 ) 3 N] 3− (TriNO x 3− ) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce L III absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce( iv ) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5d hybridization, the d-state distributions vary depending on the bonding motif (CeO vs. CeN) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity. 
    more » « less
  3. ABSTRACT The chemical bond is a fundamental concept in chemistry, and various models and descriptors have evolved since the advent of quantum mechanics. This study extends the overlap density and its topological descriptors (OP/TOP) to multiconfigurational wavefunctions. We discuss a comparative analysis of OP/TOP descriptors using CASSCF and DCD‐CAS(2) wavefunctions for a diverse range of molecular systems, including X–O bonds in X–OH (XH, Li, Na, H2B, H3C, H2N, HO, F) and Li–X′ (XF, Cl, and Br). Results show that OP/TOP aligns with bonding models like the quantum theory of atoms in molecules (QTAIM) and local vibrational modes theory, revealing insights such as overlap densities shifting towards the more electronegative atom in polar bonds. The Li–F dissociation profile using OP/TOP descriptors demonstrated sensitivity to ionic/neutral inversion during Li–F dissociation, highlighting their potential for elucidating complex bond phenomena and offering new avenues for understanding multiconfigurational chemical bond dynamics. 
    more » « less
  4. In oxide materials, an increase in oxygen vacancy concentration often results in lattice expansion, a phenomenon known as chemical expansion that can introduce detrimental stresses and lead to potential device failure. One factor often implicated in the chemical expansion of materials is the degree of localization of the multivalent cation electronic states. When an oxygen is removed from the lattice and a vacancy forms, it is believed that the two released electrons reduce multivalent cations and expand the lattice, with more localized cation states resulting in larger expansion. In this work, we computationally and experimentally studied the chemical expansion of two Pr-based perovskites that exhibit ultra-low chemical expansion, PrGa 1− x Mg x O 3− δ and BaPr 1− x Y x O 3− δ , and their parent compounds PrGaO 3− δ and BaPrO 3− δ . Using density functional theory, the degree of localization of the Pr-4f electrons was varied by adjusting the Hubbard U parameter. We find that the relationship between Pr-4f electron localization and chemical expansion exhibits more complexity than previously established. This relationship depends on the nature of the states filled by the two electrons, which may not necessarily involve the reduction of Pr. F ′-center defects can form if the reduction of Pr is unfavorable, leading to smaller chemical expansions. If hole states are present in the material, the states filled by the electrons can be Pr-4f and/or O-2p hole states depending on the degree of Pr-4f localization. The O-2p holes are more delocalized than the Pr-4f holes, resulting in smaller chemical expansions when the O-2p holes are filled. X-ray photoelectron spectroscopy reveals low concentrations of Pr 4+ in PrGa 0.9 Mg 0.1 O 3− δ and BaPr 0.9 Y 0.1 O 3− δ , supporting the possible role of O-2p holes in the low chemical expansions exhibited by these materials. This work highlights the non-trivial effects of electron localization on chemical expansion, particularly when hole states are present, pointing to design strategies to tune the chemical expansion of materials. 
    more » « less
  5. Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications. 
    more » « less