skip to main content

Title: Second release of the CoRe database of binary neutron star merger waveforms

We present the second data release of gravitational waveforms from binary neutron star (BNS) merger simulations performed by the Computational Relativity (CoRe) collaboration. The current database consists of 254 different BNS configurations and a total of 590 individual numerical-relativity simulations using various grid resolutions. The released waveform data contain the strain and the Weyl curvature multipoles up to=m=4. They span a significant portion of the mass, mass-ratio, spin and eccentricity parameter space and include targeted configurations to the events GW170817 and GW190425.CoResimulations are performed with 18 different equations of state, seven of which are finite temperature models, and three of which account for non-hadronic degrees of freedom. About half of the released data are computed with high-order hydrodynamics schemes for tens of orbits to merger; the other half is computed with advanced microphysics. We showcase a standard waveform error analysis and discuss the accuracy of the database in terms of faithfulness. We present ready-to-use fitting formulas for equation of state-insensitive relations at merger (e.g. merger frequency), luminosity peak, and post-merger spectrum.

; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
2116686 2136036 2020275 2108467 2011725
Publication Date:
Journal Name:
Classical and Quantum Gravity
Page Range or eLocation-ID:
Article No. 085011
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift ofz=0.640.32+0.83(68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm=0.80.53+2.71Gyr, stellar mass of log(M*/M) =9.690.65+0.75, star formation rate of SFR =1.441.35+9.37Myr−1, stellar metallicity of log(Z*/Z) =0.380.42+0.44, and dust attenuation ofAV=0.430.36+0.85mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution,more »with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.

    « less
  2. Abstract

    We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect during merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tension. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tensionEGW/M0∝ 1/, withEGW/M0O(1)%at the percent level, for the regime where≳ 10−3. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations.

  3. Abstract

    We investigate the stellar mass–black hole mass (*BH) relation with type 1 active galactic nuclei (AGNs) down toBH=107M, corresponding to a ≃ −21 absolute magnitude in rest-frame ultraviolet, atz= 2–2.5. Exploiting the deep and large-area spectroscopic survey of the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX), we identify 66 type 1 AGNs withBHranging from 107–1010Mthat are measured with single-epoch virial method using Civemission lines detected in the HETDEX spectra.*of the host galaxies are estimated from optical to near-infrared photometric data taken with Spitzer, the Wide-field Infrared Survey Explorer, and ground-based 4–8 m class telescopes byCIGALEspectral energy distribution (SED) fitting. We further assess the validity of SED fitting in two cases by host-nuclear decomposition performed through surface brightness profile fitting on spatially resolved host galaxies with the James Webb Space Telescope/NIRCam CEERS data. We obtain the*BHrelation covering the unexplored low-mass ranges ofBH107108M, and conduct forward modeling to fully account for the selection biases and observational uncertainties. The intrinsic*BHrelation atz∼ 2 has a moderate positive offset ofmore »0.52 ± 0.14 dex from the local relation, suggestive of more efficient black hole growth at higher redshift even in the low-mass regime ofBH107108M. Our*BHrelation is inconsistent with theBHsuppression at the low-*regime predicted by recent hydrodynamic simulations at a 98% confidence level, suggesting that feedback in the low-mass systems may be weaker than those produced in hydrodynamic simulations.

    « less
  4. Abstract

    We present a spectroscopic analysis of the most rapidly rotating stars currently known, VFTS 102 (vesini=649±52km s−1; O9: Vnnne+) and VFTS 285 (vesini=610±41km s−1; O7.5: Vnnn), both members of the 30 Dor complex in the Large Magellanic Cloud. This study is based on high-resolution ultraviolet spectra from Hubble Space Telescope/Cosmic Origins Spectrograph and optical spectra from the Very Large Telescope (VLT) X-shooter plus archival VLT GIRAFFE spectra. We utilize numerical simulations of their photospheres, rotationally distorted shape, and gravity darkening to calculate model spectral line profiles and predicted monochromatic absolute fluxes. We use a guided grid search to investigate parameters that yield best fits for the observed features and fluxes. These fits produce estimates of the physical parameters for these stars (plus a Galactic counterpart,ζOph) including the equatorial rotational velocity, inclination, radius, mass, gravity, temperature, and reddening. We find that both stars appear to be radial-velocity constant. VFTS 102 is rotating at critical velocity, has a modest He enrichment, and appears to share the motion of the nearby OB-association LH 99. These properties suggest that the star was spun up through a close binary merger. VFTS 285 is rotating at 95% of criticalmore »velocity, has a strong He enrichment, and is moving away from the R136 cluster at the center of 30 Dor. It is mostly likely a runaway star ejected by a supernova explosion that released the components of the natal binary system.

    « less
  5. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent withmore »the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

    « less