skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Second release of the CoRe database of binary neutron star merger waveforms
Abstract We present the second data release of gravitational waveforms from binary neutron star (BNS) merger simulations performed by the Computational Relativity (CoRe) collaboration. The current database consists of 254 different BNS configurations and a total of 590 individual numerical-relativity simulations using various grid resolutions. The released waveform data contain the strain and the Weyl curvature multipoles up to = m = 4 . They span a significant portion of the mass, mass-ratio, spin and eccentricity parameter space and include targeted configurations to the events GW170817 and GW190425.CoResimulations are performed with 18 different equations of state, seven of which are finite temperature models, and three of which account for non-hadronic degrees of freedom. About half of the released data are computed with high-order hydrodynamics schemes for tens of orbits to merger; the other half is computed with advanced microphysics. We showcase a standard waveform error analysis and discuss the accuracy of the database in terms of faithfulness. We present ready-to-use fitting formulas for equation of state-insensitive relations at merger (e.g. merger frequency), luminosity peak, and post-merger spectrum.  more » « less
Award ID(s):
2116686 2136036 2020275 2108467 2011725
PAR ID:
10403019
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
8
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 085011
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Quasiperiodic oscillations (QPOs) have been recently discovered in the short gamma-ray bursts (GRBs) 910711 and 931101B. Their frequencies are consistent with those of the quasiradial and quadrupolar oscillations of binary neutron star (BNS) merger remnants, as obtained in numerical relativity simulations. These simulations reveal quasi-universal relations between the remnant oscillation frequencies and the tidal coupling constant of the binaries. Under the assumption that the observed QPOs are due to these postmerger oscillations, we use the frequency–tide relations in a Bayesian framework to infer the source redshift, as well as the chirp mass and the binary tidal deformability of the BNS progenitors for GRBs 910711 and 931101B. We further use this inference to estimate bounds on the mass–radius relation for neutron stars. By combining the estimates from the two GRBs, we find a 68% credible range R 1.4 = 12.4 8 0.40 + 0.41 km for the radius of a neutron star with massM= 1.4M, which is one of the tightest bounds to date. 
    more » « less
  2. Abstract We study the ringdown signal of black holes formed in prompt-collapse binary neutron star mergers. We analyze data from 47 numerical relativity simulations. We show that the ( = 2 , m = 2 ) and ( = 2 , m = 1 ) multipoles of the gravitational wave signal are well fitted by decaying damped exponentials, as predicted by black-hole perturbation theory. We show that the ratio of the amplitude in the two modes depends on the progenitor binary mass ratioqand reduced tidal parameter Λ ~ . Unfortunately, the numerical uncertainty in our data is too large to fully quantify this dependency. If confirmed, these results will enable novel tests of general relativity in the presence of matter with next-generation gravitational-wave observatories. 
    more » « less
  3. Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of z = 0.64 0.32 + 0.83 (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= 0.8 0.53 + 2.71 Gyr, stellar mass of log(M*/M) = 9.69 0.65 + 0.75 , star formation rate of SFR = 1.44 1.35 + 9.37 Myr−1, stellar metallicity of log(Z*/Z) = 0.38 0.42 + 0.44 , and dust attenuation of A V = 0.43 0.36 + 0.85 mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website. 
    more » « less
  4. Abstract Theoretical models of galaxy formation and evolution are primarily investigated through cosmological simulations and semi-analytical models. The former method consumes O ( 10 6 ) core-hours explicitly modeling the dynamics of the galaxies, whereas the latter method only requires O ( 10 3 ) core-hours foregoing directly simulating internal structure for computational efficiency. In this work, we present a proof-of-concept machine learning regression model, using a graph neural network architecture, to predict the stellar mass of high-redshift galaxies solely from their dark matter merger trees, trained from a radiation hydrodynamics cosmological simulation of the first galaxies. 
    more » « less
  5. Abstract We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect during merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tensionGμ. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tensionEGW/M0∝ 1/Gμ, with E GW / M 0 O ( 1 ) % at the percent level, for the regime whereGμ≳ 10−3. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations. 
    more » « less