Observations of neutron star mergers have the potential to unveil detailed physics of matter and gravity in regimes inaccessible by other experiments. Quantitative comparisons to theory and parameter estimation require nonlinear numerical simulations. However, the detailed physics of energy and momentum transfer between different scales, and the formation and interaction of small scale structures, which can be probed by detectors, are not captured by current simulations. This is where turbulence enters neutron star modelling. This review will outline the theory and current status of turbulence modelling for relativistic neutron star merger simulations.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract -
Abstract We study mass ejection from a binary neutron star merger producing a long-lived massive neutron star remnant with general-relativistic neutrino-radiation hydrodynamics simulations. In addition to outflows generated by shocks and tidal torques during and shortly after the merger, we observe the appearance of a wind driven by spiral density waves in the disk. This spiral-wave-driven outflow is predominantly located close to the disk orbital plane and have a broad distribution of electron fractions. At higher latitudes, a high electron-fraction wind is driven by neutrino radiation. The combined nucleosynthesis yields from all the ejecta components is in good agreement with Solar abundance measurements.
-
Abstract We study the ringdown signal of black holes formed in prompt-collapse binary neutron star mergers. We analyze data from 47 numerical relativity simulations. We show that the
and multipoles of the gravitational wave signal are well fitted by decaying damped exponentials, as predicted by black-hole perturbation theory. We show that the ratio of the amplitude in the two modes depends on the progenitor binary mass ratioq and reduced tidal parameter . Unfortunately, the numerical uncertainty in our data is too large to fully quantify this dependency. If confirmed, these results will enable novel tests of general relativity in the presence of matter with next-generation gravitational-wave observatories. -
ABSTRACT It is widely believed that the binary neutron star merger GW190425 produced a black hole promptly upon merger. Motivated by the potential association with the fast radio burst FRB 20190425A, which took place 2.5 h after the merger, we revisit the question of the outcome of GW190425 by means of numerical relativity simulations. We show that current laboratory and astrophysical constraints on the equation of state of dense matter do not rule out the formation of a long-lived remnant. However, the formation of a stable remnant would have produced a bright kilonova, in tension with upper limits by ZTF at the location and time of FRB 20190425A. Moreover, the ejecta would have been optically thick to radio emission for days to months, preventing a putative FRB from propagating out. The predicted dispersion measure is also several orders of magnitude larger than that observed for FRB 20190425A. Our results indicate that FRB 20190425A and GW190425 are not associated. However, we cannot completely rule out the formation of a long-lived remnant, due to the incomplete coverage of the relevant sky regions. More observations of GW190425-like events, including potential upper limit, have the potential to constrain nuclear physics. To this aim, it is important that follow-up observational campaigns of gravitational wave events are informed by the properties of the source, such as their chirp mass, and we urge the LIGO-Virgo-KAGRA collaboration to promptly release them publicly.
-
ABSTRACT The future detection of gravitational waves (GWs) from a Galactic core-collapse supernova will provide information on the physics inside protoneutron stars (PNS). In this work, we apply three different classification methods for the PNS non-radial oscillation modes: Cowling classification, Generalized Cowling Nomenclature (GCN), and a classification based on modal properties (CBMP). Using PNS models from 3D simulations of core-collapse supernovae, we find that in the early stages of the PNS evolution, typically 0.4 s after the bounce, the Cowling classification is inconsistent, but the GCN and the CBMP provide complementary information that helps to understand the evolution of the modes. In the GCN, we note several avoided crossings as the mode frequencies evolve at early times, while the CBMP tracks the modes across the avoided crossings. We verify that the strongest emission of GWs by the PNS corresponds to the f mode in the GCN, indicating that the mode trapping region alternates between the core and the envelope at each avoided crossing. At later times, approximately 0.4 s after the bounce, the three classification methods present a similar description of the mode spectrum. We use our results to test universal relations for the PNS modes according to their classification and find that the behaviour of the universal relations for f and p modes is remarkably simple in the CBMP.
-
Abstract We present the second data release of gravitational waveforms from binary neutron star (BNS) merger simulations performed by the Computational Relativity (
CoRe ) collaboration. The current database consists of 254 different BNS configurations and a total of 590 individual numerical-relativity simulations using various grid resolutions. The released waveform data contain the strain and the Weyl curvature multipoles up to . They span a significant portion of the mass, mass-ratio, spin and eccentricity parameter space and include targeted configurations to the events GW170817 and GW190425.CoRe simulations are performed with 18 different equations of state, seven of which are finite temperature models, and three of which account for non-hadronic degrees of freedom. About half of the released data are computed with high-order hydrodynamics schemes for tens of orbits to merger; the other half is computed with advanced microphysics. We showcase a standard waveform error analysis and discuss the accuracy of the database in terms of faithfulness. We present ready-to-use fitting formulas for equation of state-insensitive relations at merger (e.g. merger frequency), luminosity peak, and post-merger spectrum. -
ABSTRACT We develop a method to compute synthetic kilonova light curves that combine numerical relativity simulations of neutron star mergers and the SNEC radiation–hydrodynamics code. We describe our implementation of initial and boundary conditions, r-process heating, and opacities for kilonova simulations. We validate our approach by carefully checking that energy conservation is satisfied and by comparing the SNEC results with those of two semi-analytic light-curve models. We apply our code to the calculation of colour light curves for three binaries having different mass ratios (equal and unequal mass) and different merger outcome (short-lived and long-lived remnants). We study the sensitivity of our results to hydrodynamic effects, nuclear physics uncertainties in the heating rates, and duration of the merger simulations. We find that hydrodynamics effects are typically negligible and that homologous expansion is a good approximation in most cases. However, pressure forces can amplify the impact of uncertainties in the radioactive heating rates. We also study the impact of shocks possibly launched into the outflows by a relativistic jet. None of our models match AT2017gfo, the kilonova in GW170817. This points to possible deficiencies in our merger simulations and kilonova models that neglect non-LTE effects and possible additional energy injection from the merger remnant and to the need to go beyond the assumption of spherical symmetry adopted in this work.
-
Abstract Neutrinos are copiously emitted by neutron star mergers, due to the high temperatures reached by dense matter during the merger and its aftermath. Neutrinos influence the merger dynamics and shape the properties of the ejecta, including the resulting
r -process nucleosynthesis and kilonova emission. In this work, we analyse neutrino emission from a large sample of binary neutron star merger simulations in Numerical Relativity, covering a broad range of initial masses, nuclear equation of state and viscosity treatments. We extract neutrino luminosities and mean energies, and compute quantities of interest such as the peak values, peak broadnesses, time averages and decrease time scales. We provide a systematic description of such quantities, including their dependence on the initial parameters of the system. We find that for equal-mass systems the total neutrino luminosity (several ) decreases as the reduced tidal deformability increases, as a consequence of the less violent merger dynamics. Similarly, tidal disruption in asymmetric mergers leads to systematically smaller luminosities. Peak luminosities can be twice as large as the average ones. Electron antineutrino luminosities dominate (initially by a factor of 2-3) over electron neutrino ones, while electron neutrinos and heavy flavour neutrinos have similar luminosities. Mean energies are nearly constant in time and independent on the binary parameters. Their values reflect the different decoupling temperature inside the merger remnant. Despite present uncertainties in neutrino modelling, our results provide a broad and physically grounded characterisation of neutrino emission, and they can serve as a reference point to develop more sophisticated neutrino transport schemes.$$10^{53}{\hbox {erg}~{\hbox {s}}^{-1}}$$ -
ABSTRACT Strong magnetic fields play an important role in powering the emission of neutron stars. Nevertheless, a full understanding of the interior configuration of the field remains elusive. In this work, we present general relativistic magnetohydrodynamics (MHD) simulations of the magnetic field evolution in neutron stars lasting ${\sim } {880}\,$ms (∼6.5 Alfvén crossing periods) and up to resolutions of $0.1155\,$km using Athena++. We explore two different initial conditions, one with purely poloidal magnetic field and the other with a dominant toroidal component, and study the poloidal and toroidal field energies, the growth times of the various instability-driven oscillation modes, and turbulence. We find that the purely poloidal setup generates a toroidal field, which later decays exponentially reaching $1{{\ \rm per\ cent}}$ of the total magnetic energy, showing no evidence of reaching equilibrium. The initially stronger toroidal field setup, on the other hand, loses up to 20 per cent of toroidal energy and maintains this state till the end of our simulation. We also explore the hypothesis, drawn from previous MHD simulations, that turbulence plays an important role in the quasi-equilibrium state. An analysis of the spectra in our higher resolution setups reveals, however, that in most cases we are not observing turbulence at small scales, but rather a noisy velocity field inside the star. We also observe that the majority of the magnetic energy gets dissipated as heat increasing the internal energy of the star, while a small fraction gets radiated away as electromagnetic radiation.
-
ABSTRACT We present a new moment-based energy-integrated neutrino transport code for neutron star merger simulations in general relativity. In the merger context, ours is the first code to include Doppler effects at all orders in υ/c, retaining all non-linear neutrino–matter coupling terms. The code is validated with a stringent series of tests. We show that the inclusion of full neutrino–matter coupling terms is necessary to correctly capture the trapping of neutrinos in relativistically moving media, such as in differentially rotating merger remnants. We perform preliminary simulations proving the robustness of the scheme in simulating ab-initio mergers to black hole collapse and long-term neutron star remnants up to ${\sim }70\,$ ms. The latter is the longest dynamical space-time, 3D, general relativistic simulations with full neutrino transport to date. We compare results obtained at different resolutions and using two different closures for the moment scheme. We do not find evidences of significant out-of-thermodynamic equilibrium effects, such as bulk viscosity, on the post-merger dynamics or gravitational wave emission. Neutrino luminosities and average energies are in good agreement with theory expectations and previous simulations by other groups using similar schemes. We compare dynamical and early wind ejecta properties obtained with M1 and with our older neutrino treatment. We find that the M1 results have systematically larger proton fractions. However, the differences in the nucleosynthesis yields are modest. This work sets the basis for future detailed studies spanning a wider set of neutrino reactions, binaries, and equations of state.