The vestibular system (VS) allows humans to have a sense of balance and orientation. Within the VS, fluid displacement occurs within the ear canal, triggering nerve signals to be translated by the nervous system, allowing for the interpretation of the head's orientation. When there is a disturbance to this system, vestibular dysfunction occurs potentially causing vertigo and a loss of. balance. It is estimated that 35 percent of adults 40 years or older in the United States have experienced vestibular dysfunction. The vestibular balance system poses a robust, unique topic for developing interdisciplinary education curricula as its function encapsulates many fundamental mechanical, chemical, biological, and physical phenomena that can be studied with engineering concepts and principles. In this work, we present a survey of models of the vestibular sensory system. Following which, selected models are presented in an experiential learning format for students to better understand the relationship and sensitivity of model parameters and external stimuli to physiological system behavior. By conducting simulations of these models, students can visualize outcomes, pose questions, and potentially identify areas of research interest. This paper is the outcome of an Innovations in Graduate Education project supported by the National Science Foundation. The authors are graduate students from three engineering majors from the University of Massachusetts Lowell and the University of the District of Columbia co-creating an educational module with faculty and experts on human balance. The developed module related to analyzing the vestibular balance system mechanics will be integrated into undergraduate courses across engineering departments in partnering institutions.
more »
« less
First evidence of the link between internal and external structure of the human inner ear otolith system using 3D morphometric modeling
Abstract Our sense of balance is among the most central of our sensory systems, particularly in the evolution of human positional behavior. The peripheral vestibular system (PVS) comprises the organs responsible for this sense; the semicircular canals (detecting angular acceleration) and otolith organs (utricle and saccule; detecting linear acceleration, vibration, and head tilt). Reconstructing vestibular evolution in the human lineage, however, is problematic. In contrast to considerable study of the canals, relationships between external bone and internal membranous otolith organs (otolith system) remain largely unexplored. This limits our understanding of vestibular functional morphology. This study combines spherical harmonic modeling and landmark-based shape analyses to model the configuration of the human otolith system. Our approach serves two aims: (1) test the hypothesis that bony form covaries with internal membranous anatomy; and (2) create a 3D morphometric model visualizing bony and membranous structure. Results demonstrate significant associations between bony and membranous tissues of the otolith system. These data provide the first evidence that external structure of the human otolith system is directly related to internal anatomy, suggesting a basic biological relationship. Our results visualize this structural relationship, offering new avenues into vestibular biomechanical modeling and assessing the evolution of the human balance system.
more »
« less
- Award ID(s):
- 2051335
- PAR ID:
- 10403052
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Reports
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2045-2322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The vestibular system (VS) allows humans to have a sense of balance and orientation. Within the VS, fluid displacement occurs within the ear canal, triggering nerve signals to be translated by the nervous system, allowing for the interpretation of the head's orientation. When there is a disturbance to this system, vestibular dysfunction occurs potentially causing vertigo and a loss of balance. It is estimated that 35 percent of adults 40 years or older in the United States have experienced vestibular dysfunction. The vestibular balance system poses a robust, unique topic for developing interdisciplinary education curricula as its function encapsulates many fundamental mechanical, chemical, biological, and physical phenomena that can be studied with engineering concepts and principles. In this work, we present a survey of models of the vestibular sensory system. Following which, selected models are presented in an experiential learning format for students to better understand the relationship and sensitivity of model parameters and external stimuli to physiological system behavior. By conducting simulations of these models, students can visualize outcomes, pose questions, and potentially identify areas of research interest. This paper is the outcome of an Innovations in Graduate Education project supported by the National Science Foundation. The authors are graduate students from three engineering majors from the University of Massachusetts Lowell and the University of the District of Columbia co-creating an educational module with faculty and experts on human balance. The developed module related to analyzing the vestibular balance system mechanics will be integrated into undergraduate courses across engineering departments in partnering institutions.more » « less
-
Precision modeling of the hand internal musculoskeletal anatomy has been largely limited to individual poses, and has not been connected into continuous volumetric motion of the hand anatomy actuating across the hand's entire range of motion. This is for a good reason, as hand anatomy and its motion are extremely complex and cannot be predicted merely from the anatomy in a single pose. We give a method to simulate the volumetric shape of hand's musculoskeletal organs to any pose in the hand's range of motion, producing external hand shapes and internal organ shapes that match ground truth optical scans and medical images (MRI) in multiple scanned poses. We achieve this by combining MRI images in multiple hand poses with FEM multibody nonlinear elastoplastic simulation. Our system models bones, muscles, tendons, joint ligaments and fat as separate volumetric organs that mechanically interact through contact and attachments, and whose shape matches medical images (MRI) in the MRI-scanned hand poses. The match to MRI is achieved by incorporating pose-space deformation and plastic strains into the simulation. We show how to do this in a non-intrusive manner that still retains all the simulation benefits, namely the ability to prescribe realistic material properties, generalize to arbitrary poses, preserve volume and obey contacts and attachments. We use our method to produce volumetric renders of the internal anatomy of the human hand in motion, and to compute and render highly realistic hand surface shapes. We evaluate our method by comparing it to optical scans, and demonstrate that we qualitatively and quantitatively substantially decrease the error compared to previous work. We test our method on five complex hand sequences, generated either using keyframe animation or performance animation using modern hand tracking techniques.more » « less
-
Synopsis Animals need to accurately sense changes in their body position to perform complex movements. It is increasingly clear that the vertebrate central nervous system contains a variety of cells capable of detecting body motion, in addition to the comparatively well-understood mechanosensory cells of the vestibular system and the peripheral proprioceptors. One such intriguing system is the lower spinal cord and column in birds, also known as the avian lumbosacral organ (LSO), which is thought to act as a set of balance sensors that allow birds to detect body movements separately from head movements detected by the vestibular system. Here, we take what is known about proprioceptive, mechanosensory spinal neurons in other vertebrates to explore hypotheses for how the LSO might sense mechanical information related to movement. Although the LSO is found only in birds, recent immunohistochemical studies of the avian LSO have hinted at similarities between cells in the LSO and the known spinal proprioceptors in other vertebrates. In addition to describing possible connections between avian spinal anatomy and recent findings on spinal proprioception as well as sensory and sensorimotor spinal networks, we also present some new data that suggest a role for sensory afferent peptides in LSO function. Thus, this perspective articulates a set of testable ideas on mechanisms of LSO function grounded in the emerging spinal proprioception scientific literature.more » « less
-
For the several millions of vestibular loss sufferers nationwide, daily-living is severely affected in that common everyday tasks, such as getting out of bed at night, maintaining balance on a moving bus, or walking on an uneven surface, may cause loss of stability leading to falls and injury. Aside from loss of balance, blurred vision and vertigo (perceived spinning sensation) are also extremely debilitating in vestibular impaired individuals. For the investigation of implants and prostheses that are being developed towards implementation in humans, non-human primates are a key component. The purpose of our study was to implement a distinctive balance platform-system to investigate postural responses for moderate to severe vestibular loss and invasive vestibular prosthesis-assisted non-human primates (rhesus monkeys) for test balance conditions of various task-difficulty levels. Although the need for vestibular rehabilitative solutions is apparent, postural responses for a broad range of peripheral vestibular function, and for various stationary and moving support conditions, have not been systematically investigated. The measurement system used in this research was unique in that it allowed us to conduct animal experiments, not investigated previously; such experiments are necessary towards the development on an invasive vestibular prosthesis to be used in humans suffering from vestibular loss. Our platform-system facilitated the study of rhesus monkey posture for stationary support surface conditions (i.e., quiet stance and head turns; more versus fewer footplate cues and large versus small base-of-support) and for dynamic support surface conditions (i.e., pseudorandom roll-tilts of the support surface). Further, the platform-system was used to systematically study postural responses that will serve as baseline measures for future vestibular-focused human and non-human primate posture studies.more » « less
An official website of the United States government
