In the lungs, the Laplace pressure, Δ P = 2 γ / R , would be higher in smaller alveoli than larger alveoli unless the surface tension, γ decreases with alveolar interfacial area, A , such that 2ε > γ in which ε = A (d γ /d A ) is the dilatational modulus. In Acute Respiratory Distress Syndrome (ARDS), lipase activity due to the immune response to an underlying trauma or disease causes single chain lysolipid concentrations to increase in the alveolar fluids via hydrolysis of double-chain phospholpids in bacterial, viral, and normal cell membranes. Increasing lysolipid concentrations decrease the dilatational modulus dramatically at breathing frequencies if the soluble lysolipid has sufficient time to diffuse off the interface, causing 2 ε < γ , thereby potentially inducing the “Laplace Instability”, in which larger alveoli have a lower internal pressure than smaller alveoli. This can lead to uneven lung inflation, alveolar flooding, and poor gas exchange, typical symptoms of ARDS. While the ARDS lung contains a number of lipid and protein species in the alveolar fluid in addition to lysolipids, the surface activity and frequency dependent dilatational modulus of lysolipid suggest how inflammation may lead to the lung instabilities associated with ARDS. At high frequencies, even at high lysolipid concentrations, 2 ε − γ > 0, which may explain the benefits ARDS patients receive from high frequency oscillatory ventilation.
more »
« less
Inflation instability in the lung: an analytical model of a thick-walled alveolus with wavy fibres under large deformations
Inflation of hollow elastic structures can become unstable and exhibit a runaway phenomenon if the tension in their walls does not rise rapidly enough with increasing volume. Biological systems avoid such inflation instability for reasons that remain poorly understood. This is best exemplified by the lung, which inflates over its functional volume range without instability. The goal of this study was to determine how the constituents of lung parenchyma determine tissue stresses that protect alveoli from instability-related overdistension during inflation. We present an analytical model of a thick-walled alveolus composed of wavy elastic fibres, and investigate its pressure–volume behaviour under large deformations. Using second-harmonic generation imaging, we found that collagen waviness follows a beta distribution. Using this distribution to fit human pressure–volume curves, we estimated collagen and elastin effective stiffnesses to be 1247 kPa and 18.3 kPa, respectively. Furthermore, we demonstrate that linearly elastic but wavy collagen fibres are sufficient to achieve inflation stability within the physiological pressure range if the alveolar thickness-to-radius ratio is greater than 0.05. Our model thus identifies the constraints on alveolar geometry and collagen waviness required for inflation stability and provides a multiscale link between alveolar pressure and stresses on fibres in healthy and diseased lungs.
more »
« less
- Award ID(s):
- 1910401
- PAR ID:
- 10403138
- Date Published:
- Journal Name:
- Journal of The Royal Society Interface
- Volume:
- 18
- Issue:
- 183
- ISSN:
- 1742-5662
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the healthy lung, bronchi are tethered open by the surrounding parenchyma; for a uniform distribution of these peribronchial structures, the solution is well known. An open question remains regarding the effect of a distributed set of collapsed alveoli, as can occur in disease. Here, we address this question by developing and analyzing microscale finite-element models of systems of heterogeneously inflated alveoli to determine the range and extent of parenchymal tethering effects on a neighboring collapsible airway. This analysis demonstrates that micromechanical stresses extend over a range of ∼5 airway radii, and this behavior is dictated primarily by the fraction, not distribution, of collapsed alveoli in that region. A mesoscale analysis of the microscale data identifies an effective shear modulus, G eff , that accurately characterizes the parenchymal support as a function of the average transpulmonary pressure of the surrounding alveoli. We demonstrate the use of this formulation by analyzing a simple model of a single collapsible airway surrounded by heterogeneously inflated alveoli (a “pig-in-a-blanket” model), which quantitatively demonstrates the increased parenchymal compliance and reduction in airway caliber that occurs with decreased parenchymal support from hypoinflated obstructed alveoli. This study provides a building block from which models of an entire lung can be developed in a computationally tenable manner that would simulate heterogeneous pulmonary mechanical interdependence. Such multiscale models could provide fundamental insight toward the development of protective ventilation strategies to reduce the incidence or severity of ventilator-induced lung injury. NEW & NOTEWORTHY A destabilized lung leads to airway and alveolar collapse that can result in catastrophic pulmonary failure. This study elucidates the micromechanical effects of alveolar collapse and determines its range of influence on neighboring collapsible airways. A mesoscale analysis reveals a master relationship that can that can be used in a computationally efficient manner to quantitatively model alveolar mechanical heterogeneity that exists in acute respiratory distress syndrome (ARDS), which predisposes the lung to volutrauma and/or atelectrauma. This analysis may lead to computationally tenable simulations of heterogeneous organ-level mechanical interactions that can illuminate novel protective ventilation strategies to reduce ventilator-induced lung injury.more » « less
-
An analytical solution is derived for the bifurcations of an elastic disc that is constrained on the boundary with an isoperimetric Cosserat coating. The latter is treated as an elastic circular rod, either perfectly or partially bonded (with a slip interface in the latter case) and is subjected to three different types of uniformly distributed radial loads (including hydrostatic pressure). The proposed solution technique employs complex potentials to treat the disc’s interior and incremental Lagrangian equations to describe the prestressed elastic rod modelling the coating. The bifurcations of the disc occur with modes characterized by different circumferential wavenumbers, ranging between ovalization and high-order waviness, as a function of the ratio between the elastic stiffness of the disc and the bending stiffness of its coating. The presented results find applications in various fields, such as coated fibres, mechanical rollers, and the growth and morphogenesis of plants and fruits.more » « less
-
null (Ed.)Fibrotic disorders account for over one third of mortalities worldwide. Despite great efforts to study the cellular and molecular processes underlying fibrosis, there are currently few effective therapies. Dual-stage polymerization reactions are an innovative tool for recreating heterogeneous increases in extracellular matrix (ECM) modulus, a hallmark of fibrotic diseases in vivo . Here, we present a clickable decellularized ECM (dECM) crosslinker incorporated into a dynamically responsive poly(ethylene glycol)-α-methacrylate (PEGαMA) hybrid-hydrogel to recreate ECM remodeling in vitro . An off-stoichiometry thiol–ene Michael addition between PEGαMA (8-arm, 10 kg mol −1 ) and the clickable dECM resulted in hydrogels with an elastic modulus of E = 3.6 ± 0.24 kPa, approximating healthy lung tissue (1–5 kPa). Next, residual αMA groups were reacted via a photo-initiated homopolymerization to increase modulus values to fibrotic levels ( E = 13.4 ± 0.82 kPa) in situ . Hydrogels with increased elastic moduli, mimicking fibrotic ECM, induced a significant increase in the expression of myofibroblast transgenes. The proportion of primary fibroblasts from dual-reporter mouse lungs expressing collagen 1a1 and alpha-smooth muscle actin increased by approximately 60% when cultured on stiff and dynamically stiffened hybrid-hydrogels compared to soft. Likewise, fibroblasts expressed significantly increased levels of the collagen 1a1 transgene on stiff regions of spatially patterned hybrid-hydrogels compared to the soft areas. Collectively, these results indicate that hybrid-hydrogels are a new tool that can be implemented to spatiotemporally induce a phenotypic transition in primary murine fibroblasts in vitro .more » « less
-
Highly-resolved, direct numerical simulations of turbulent channel flows with sub- Kolmogorov grid resolution are performed to investigate the characteristics of wall-bounded turbulent flows in the presence of sinusoidal wall waviness. The wall waviness serves as a simplified model to study the effects of well-defined geometric parameters of roughness on the characteristics of wall-bounded turbulent flows. In this study, a two-dimensional wave profile with steepness ranging from 0.06 to 0.25 and wave amplitudes ranging from 9 to 36 wall units were considered. For the smooth and wavy-wall simulations, the Reynolds number based on the friction velocity was kept constant. To study the effects of wave amplitude and wavelength on turbulence, two-dimensional time and spanwise averaged distributions of the mean flow, turbulent kinetic energy, and Reynolds stresses as well as turbulent kinetic energy production and dissipation are examined. Furthermore, in order to provide a more direct comparison with the smooth-wall turbulent channel flow one-dimensional pro- files of these quantities are computed by averaging them over one wavelength of the wave profile. A strong effect of the wall-waviness and, in particular, the wave amplitude and wavelength on the characteristics of the turbulence was obtained. Wall waviness mainly affected the inner flow region while all recorded turbulent statistics collapsed in the outer flow region. Significant reductions in turbulent kinetic energy, production and dissipation were obtained with increasing wave amplitudes when reported in inner scale. While production is lower for all wavy wall cases considered here in comparison to the smooth wall, reducing the wavelength caused an increase in production and a decrease in dissipation.more » « less
An official website of the United States government

