skip to main content


Title: RF Injection Locking of THz Metasurface Quantum‐Cascade VECSEL
Abstract

Radiofrequency (RF) injection locking and spectral broadening of a terahertz (THz) quantum‐cascade vertical‐external‐cavity surface‐emitting laser (QC‐VECSEL) is demonstrated. An intracryostat VECSEL focusing cavity design is used to enable continuous‐wave lasing with a cavity length over 30 mm, which corresponds to a round‐trip frequency near 5 GHz. Strong RF current modulation is injected to the QC‐metasurface electrical bias to pull and lock the round‐trip frequency. The injection locking range at various RF injection powers is recorded and compared with the injection locking theory. Moreover, the lasing spectrum broadens from 14 GHz in free‐running mode to a maximum spectral width around 110 GHz with 20 dBm of injected RF power. This experimental setup is suitable for further exploration of active mode‐locking and picosecond pulse generation in THz QC‐VECSELs.

 
more » « less
NSF-PAR ID:
10403154
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Laser & Photonics Reviews
Volume:
17
Issue:
8
ISSN:
1863-8880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Frequency modulated continuous wave laser ranging (FMCW LiDAR) enables distance mapping with simultaneous position and velocity information, is immune to stray light, can achieve long range, operate in the eye-safe region of 1550 nm and achieve high sensitivity. Despite its advantages, it is compounded by the simultaneous requirement of both narrow linewidth low noise lasers that can be precisely chirped. While integrated silicon-based lasers, compatible with wafer scale manufacturing in large volumes at low cost, have experienced major advances and are now employed on a commercial scale in data centers, and impressive progress has led to integrated lasers with (ultra) narrow sub-100 Hz-level intrinsic linewidth based on optical feedback from photonic circuits, these lasers presently lack fast nonthermal tuning, i.e. frequency agility as required for coherent ranging. Here, we demonstrate a hybrid photonic integrated laser that exhibits very narrow intrinsic linewidth of 25 Hz while offering linear, hysteresis-free, and mode-hop-free-tuning beyond 1 GHz with up to megahertz actuation bandwidth constituting 1.6 × 1015Hz/s tuning speed. Our approach uses foundry-based technologies - ultralow-loss (1 dB/m) Si3N4photonic microresonators, combined with aluminium nitride (AlN) or lead zirconium titanate (PZT) microelectromechanical systems (MEMS) based stress-optic actuation. Electrically driven low-phase-noise lasing is attained by self-injection locking of an Indium Phosphide (InP) laser chip and only limited by fundamental thermo-refractive noise at mid-range offsets. By utilizing difference-drive and apodization of the photonic chip to suppress mechanical vibrations of the chip, a flat actuation response up to 10 MHz is achieved. We leverage this capability to demonstrate a compact coherent LiDAR engine that can generate up to 800 kHz FMCW triangular optical chirp signals, requiring neither any active linearization nor predistortion compensation, and perform a 10 m optical ranging experiment, with a resolution of 12.5 cm. Our results constitute a photonic integrated laser system for scenarios where high compactness, fast frequency actuation, and high spectral purity are required.

     
    more » « less
  2. Mode-locked biphoton frequency combs exhibit multiple discrete comblike temporal correlations from the Fourier transform of its phase-coherent frequency spectrum. Both temporal correlation and Franson interferometry are valuable tools for analyzing the joint properties of biphoton frequency combs, and the latter has proven to be essential for testing the fundamental quantum nature, the time-energy entanglement distribution, and the large-alphabet quantum key distributions. However, the Franson recurrence interference visibility in biphoton frequency combs unavoidably experiences a falloff that deteriorates the quality of time-energy entanglement and channel capacity for longer cavity round trips. In this paper, we provide a new method to address this problem towards optimum Franson interference recurrence. We first observe mode-locked temporal oscillations in a 5.03 GHz free-spectral range singly filtered biphoton frequency comb using only commercial detectors. Then, we observe similar falloff trend of time-energy entanglement in 15.15 GHz and 5.03 GHz free-spectral range singly filtered biphoton frequency combs, whereas, the optimum central time-bin accidental-subtracted visibility over 97% for both cavities. Here, we find that by increasing the cavity finesseF, we can enhance the detection probability in temporal correlations and towards optimum Franson interference recurrence in our singly filtered biphoton frequency combs. For the first time, via a higher cavity finesseFof 45.92 with a 15.11 GHz free-spectral range singly filtered biphoton frequency comb, we present an experimental ≈3.13-fold improvement of the Franson visibility compared to the Franson visibility with a cavity finesseFof 11.14 at the sixth time bin. Near optimum Franson interference recurrence and a time-bin Schmidt number near 16 effective modes in similar free-spectral range cavity are predicted with a finesseFof 200. Our configuration is versatile and robust against changes in cavity parameters that can be designed for various quantum applications, such as high-dimensional time-energy entanglement distributions, high-dimensional quantum key distributions, and wavelength-multiplexed quantum networks.

     
    more » « less
  3. Abstract

    High-spectral-purity frequency-agile room-temperature sources in the terahertz spectrum are foundational elements for imaging, sensing, metrology, and communications. Here we present a chip-scale optical parametric oscillator based on an integrated nonlinear microresonator that provides broadly tunable single-frequency and multi-frequency oscillators in the terahertz regime. Through optical-to-terahertz down-conversion using a plasmonic nanoantenna array, coherent terahertz radiation spanning 2.8-octaves is achieved from 330 GHz to 2.3 THz, with ≈20 GHz cavity-mode-limited frequency tuning step and ≈10 MHz intracavity-mode continuous frequency tuning range at each step. By controlling the microresonator intracavity power and pump-resonance detuning, tunable multi-frequency terahertz oscillators are also realized. Furthermore, by stabilizing the microresonator pump power and wavelength, sub-100 Hz linewidth of the terahertz radiation with 10−15residual frequency instability is demonstrated. The room-temperature generation of both single-frequency, frequency-agile terahertz radiation and multi-frequency terahertz oscillators in the chip-scale platform offers unique capabilities in metrology, sensing, imaging and communications.

     
    more » « less
  4. Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more.

     
    more » « less
  5. A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (∼<#comment/>300GHz) to a chip-scale mode-locked laser with a∼<#comment/>10GHzrepetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of30×<#comment/>to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is∼<#comment/>10−<#comment/>12at 1 s with a1/τ<#comment/>trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than100µ<#comment/>Wof optical power to achieve stable locking.

     
    more » « less