Abstract Radiofrequency (RF) injection locking and spectral broadening of a terahertz (THz) quantum‐cascade vertical‐external‐cavity surface‐emitting laser (QC‐VECSEL) is demonstrated. An intracryostat VECSEL focusing cavity design is used to enable continuous‐wave lasing with a cavity length over 30 mm, which corresponds to a round‐trip frequency near 5 GHz. Strong RF current modulation is injected to the QC‐metasurface electrical bias to pull and lock the round‐trip frequency. The injection locking range at various RF injection powers is recorded and compared with the injection locking theory. Moreover, the lasing spectrum broadens from 14 GHz in free‐running mode to a maximum spectral width around 110 GHz with 20 dBm of injected RF power. This experimental setup is suitable for further exploration of active mode‐locking and picosecond pulse generation in THz QC‐VECSELs.
more »
« less
Multi-bounce self-mixing in terahertz metasurface external-cavity lasers
The effects of optical feedback on a terahertz (THz) quantum-cascade metasurface vertical-external-cavity surface-emitting laser (QC-VECSEL) are investigated via self-mixing. A single-mode 2.80 THz QC-VECSEL operating in continuous-wave is subjected to various optical feedback conditions (i.e., feedback strength, round-trip time, and angular misalignment) while variations in its terminal voltage associated with self-mixing are monitored. Due to its large radiating aperture and near-Gaussian beam shape, we find that the QC-VECSEL is strongly susceptible to optical feedback, which is robust against misalignment of external optics. This, in addition to the use of a high-reflectance flat output coupler, results in high feedback levels associated with multiple round-trips within the external cavity-a phenomenon not typically observed for ridge-waveguide QC-lasers. Thus, a new theoretical model is established to describe self-mixing in the QC-VECSEL. The stability of the device under variable optical feedback conditions is also studied. Any mechanical instabilities of the external cavity (such as vibrations of the output coupler), are enhanced due to feedback and result in low-frequency oscillations of the terminal voltage. The work reveals how the self-mixing response differs for the QC-VECSEL architecture, informs other systems in which optical feedback is unavoidable, and paves the way for QC-VECSEL self-mixing applications.
more »
« less
- Award ID(s):
- 2041165
- PAR ID:
- 10505473
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Express
- Volume:
- 32
- Issue:
- 11
- ISSN:
- 1094-4087; OPEXFF
- Format(s):
- Medium: X Size: Article No. 18880
- Size(s):
- Article No. 18880
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report a terahertz quantum-cascade vertical-external-cavity surface-emitting laser (QC-VECSEL) emitting around 1.9 THz with up to 10% continuous fractional frequency tuning of a single laser mode. The device shows lasing operation in pulsed mode up to 102 K in a high-quality beam, with the maximum output power of 37 mW and slope efficiency of 295 mW/A at 77 K. Challenges for up-scaling the operating wavelength in QC metasurface VECSELs are identified.more » « less
-
A broadband active metasurface is designed around quantum‐cascade (QC) gain material for use in a broadband tunable QC vertical external‐cavity surface‐emitting laser (VECSEL). The metasurface is based on a unit cell containing two resonant waveguide elements that couple with the periodicity of the metasurface to produce a multi‐resonant reflection spectrum. Simulated reflectance spectra exhibit full‐width half‐maximum bandwidths up to 50% of the centre frequency. The tested QC‐VECSEL demonstrates up to 15 mW of peak pulse power at 77 K and supports multimode lasing from 2.85 to 3.9 THz (>30% fractional bandwidth around 3.37 THz). The frequency coverage is limited by how short the cavity can be made, rather than the metasurface bandwidth. Consistent multimoding results from non‐uniform distribution of spectral energy across the surface.more » « less
-
null (Ed.)Dielectric elastomer (DE) materials, a category of electroactive polymers, can be used to design actuators that are flexible, resilient, lightweight, and durable. However, due to the uncertainties in its actuation dynamics, DE actuators always rely on feedback control to perform accurate and safe operations. In this paper, a tubular dielectric elastomer actuator (DEA) with self-sensing capability is developed. It does not require external devices to measure displacement for feedback control. The displacement of the actuator is controlled using a proportional-integral controller with the capacitance measured at high probing frequency as the self-sensing mechanism component of the actuator. By superimposing actuation and probing voltage and applying them to the DE tube, the actuation voltage activates the movement of the DE tube and the probing voltage is used for self-sensing. Fast Fourier Transform (FFT) is then used to filter a given frequency of the probing current and voltage and then calculate the capacitance from the probing current and voltage during each time window. With the relationship between capacitance and displacement of the DE tube, the displacement output is estimated online and self-sensing without an external sensor is achieved. The self-sensing signal is then used as a feedback signal in a closed-loop design to follow a reference signal for tracking. The experimental results validate the self-sensing of the DE actuator in feedback control.more » « less
-
We report on the experimental results of a passively mode-locked vertical external cavity surface emitting laser (VECSEL), implemented in a W-cavity configuration, using a lithium triborate (LBO) crystal for intra-cavity second harmonic generation (SHG) at 528 nm. The W-cavity configuration allows separation of the crystal from the semiconductor saturable absorber mirror (SESAM), enabling independent control over the Gaussian beam sizes at the crystal, chip, and SESAM. This optimized cavity demonstrated a second harmonic pulse width of ~760 fs at a frequency of 465 MHz and 230 mW average output power, resulting in a peak pulse power of 580 W.more » « less
An official website of the United States government
