Abstract This article examines the effects of two widely used geomasking methods (aggregation and the bimodal Gaussian method) on errors in car‐ and transit‐based travel times from people's homes to health facilities using Cook County in Illinois as a case study area. It addresses two research questions: (Q1) How do the effects of geomasking on travel time errors differ between transportation modes? (Q2) How do errors in car‐ and transit‐based travel times differ between urban and suburban areas? The results indicate that geomasking introduces considerable errors in travel times. Specifically, errors in transit‐based travel times are significantly higher than those in car‐based travel times. Moreover, when large radii are used for geomasking, errors in car‐based travel times in urban areas are significantly higher than those in suburban areas. On the contrary, transit‐based travel time errors in urban areas are significantly lower than those in suburban areas. Because transportation modes and urban area types play essential roles in travel time errors caused by geomasking, researchers need to mitigate these errors when using geomasked locations for their analysis (e.g., evaluating the spatial accessibility of certain facilities, such as hospitals or healthy food outlets). 
                        more » 
                        « less   
                    
                            
                            Opioid Treatment Deserts: Concept development and application in a US Midwestern urban county
                        
                    
    
            Objectives An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data. Methods We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types. Results A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race. Conclusions Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1761969
- PAR ID:
- 10403170
- Editor(s):
- West, Brooke
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 16
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0250324
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Introduction The objectives of this study were to describe health professional students' experiences and opinions about patients with opioid-use disorder (OUD), to summarize evaluation results from an OUD educational event and to compare results by sex, discipline, and clinical experience. Methods The OUD educational event lasted 75 minutes and covered the epidemiology of the opioid epidemic, evidence-based prevention and treatment services, stigma, and recommendations on how to improve care. An anonymous pre-event survey collected information on attendees' experiences and opinions about patients with OUD. The postevent survey collected information on the attendees' evaluation of the event. Results Forty percent of students reported having a friend or family member who has/had an OUD. A minority (29.1%) reported that they would be uncomfortable working with patients with OUD or would prefer not to interact with patients with OUD (27.7%). Overall, the event evaluation results were very positive, and 85.5% reported that the information would change or influence their clinical practices. The open-ended responses found that the content was informative (n = 36); the attendees liked the inclusion of statistics (n = 19) and that the content was locally focused (n = 13). Discussion Health professional students participating in this event had fewer negative opinions of patients with OUD than previous research has found, and this may, in part, be explained by their personal experiences. Overall, health professional students want to learn more about patients with OUD.more » « less
- 
            Abstract Background Opioid-related overdose death is a public health epidemic in much of the USA, yet little is known about how people who use opioids (PWUO) experience overdose deaths in their social networks. We explore these experiences through a qualitative study of opioid-related overdose death bereavement among PWUO. Methods We recruited 30 adults who inject opioids from a syringe service program in the Midwestern USA and interviewed them using a semi-structured guide that addressed experiences of opioid use, opioid-related overdose, and overdose reversal via the medication naloxone. Interviews were transcribed verbatim and analyzed thematically. Findings Participants described overdose death as ever-present in their social worlds. Most (approximately 75%) reported at least one overdose death in their social network, and many came to consider death an inevitable end of opioid use. Participants described grief shaped by complex social relations and mourning that was interrupted due to involvement with social services and criminal legal systems. They also reported several ways that overdose deaths influenced their drug use, with some increasing their use and others adopting safer drug use practices. Despite the high prevalence of overdose deaths in their social networks, only one participant reported receiving grief support services. Discussion Findings underscore the need for interventions that not only maintain life, such as naloxone distribution, but also improve quality of life by attending to grief related to overdose death bereavement. We discuss policies and practices with the potential to address the unique psychological, social, and structural challenges of grief for this population.more » « less
- 
            Early detection and rapid intervention can prevent death from opioid overdose. At high doses, opioids (particularly fentanyl) can cause rapid cessation of breathing (apnea), hypoxemic/hypercarbic respiratory failure, and death, the physiologic sequence by which people commonly succumb from unintentional opioid overdose. We present algorithms that run on smartphones and unobtrusively detect opioid overdose events and their precursors. Our proof-of- concept contactless system converts the phone into a short-range active sonar using frequency shifts to identify respiratory depression, apnea, and gross motor movements associated with acute opioid toxicity. We develop algorithms and perform testing in two environments: (i) an approved supervised injection facility (SIF), where people self-inject illicit opioids, and (ii) the operating room (OR), where we simulate rapid, opioid-induced overdose events using routine induction of general anesthesia. In the SIF ( n = 209), our system identified postinjection, opioid-induced central apnea with 96% sensitivity and 98% specificity and identified respiratory depression with 87% sensitivity and 89% specificity. These two key events commonly precede fatal opioid overdose. In the OR, our algorithm identified 19 of 20 simulated overdose events. Given the reliable reversibility of acute opioid toxicity, smartphone-enabled overdose detection coupled with the ability to alert naloxone-equipped friends and family or emergency medical services (EMS) could hold potential as a low-barrier, harm reduction intervention.more » « less
- 
            Long-term and high-dose prescription opioid use places individuals at risk for opioid misuse, opioid use disorder (OUD), and overdose. Existing methods for monitoring opioid use and detecting misuse rely on self-reports, which are prone to reporting bias, and toxicology testing, which may be infeasible in outpatient settings. Although wearable technologies for monitoring day-to-day health metrics have gained significant traction in recent years due to their ease of use, flexibility, and advancements in sensor technology, their application within the opioid use space remains underexplored. In the current work, we demonstrate that oral opioid administrations can be detected using physiological signals collected from a wrist sensor. More importantly, we show that models informed by opioid pharmacokinetics increase reliability in predicting the timing of opioid administrations. Forty-two individuals who were prescribed opioids as a part of their medical treatment in-hospital and after discharge were enrolled. Participants wore a wrist sensor throughout the study, while opioid administrations were tracked using electronic medical records and self-reports. We collected 1,983 hours of sensor data containing 187 opioid administrations from the inpatient setting and 927 hours of sensor data containing 40 opioid administrations from the outpatient setting. We demonstrate that a self-supervised pre-trained model, capable of learning the canonical time series of plasma concentration of the drug derived from opioid pharmacokinetics, can reliably detect opioid administration in both settings. Our work suggests the potential of pharmacokinetic-informed, data-driven models to objectively detect opioid use in daily life.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    