The known compound K[( PO ) 2 Mn(CO) 2 ] ( PO = 2-((diphenylphosphino)methyl)-4,6-dimethylphenolate) (K[ 1 ]) was protonated to form the new Mn( i ) complex ( HPO )( PO )Mn(CO) 2 ( H 1 ) and was determined to have a p K a approximately equal to tetramethylguanidine (TMG). The reduction potential of K[ 1 ] was determined to be −0.58 V vs. Fc/Fc + in MeCN and allowed for an estimation of an experimental O–H bond dissociation free energy (BDFE O–H ) of 73 kcal mol −1 according to the Bordwell equation. This value is in good agreement with a corrected DFT computed BDFE O–H of 68.0 kcal mol −1 (70.3 kcal mol −1 for intramolecular H-bonded isomer). The coordination of the protonated O-atom in the solid-state H 1 was confirmed using FTIR spectroscopy and X-ray crystallography. The phenol moiety is hemilabile as evident from computation and experimental results. For instance, dissociation of the protonated O-atom in H 1 is endergonic by only a few kcal mol −1 (DFT). Furthermore, [ 1 ] − and other Mn( i ) compounds coordinated to PO and/or HPO do not react with MeCN, but H 1 reacts with MeCN to form H 1 + MeCN . Experimental evidence for the solution-bound O-atoms of H 1 was obtained from 1 H NMR and UV-vis spectroscopy and by comparing the electronic spectra of bona fide 16-e − Mn( i ) complexes such as [{ PNP }Mn(CO) 2 ] ( PNP = − N{CH 2 CH 2 (P i Pr 2 )} 2 ) and [( Me3SiOP )( PO )Mn(CO) 2 ] ( Me3Si 1 ). Compound H 1 is only meta-stable ( t 1/2 0.5–1 day) and decomposes into products consistent with homolytic O–H bond cleavage. For instance, treatment of H 1 with TEMPO resulted in formation of TEMPOH, free ligand, and [Mn II {( PO ) 2 Mn(CO) 2 } 2 ]. Together with the experimental and calculated weakened BDFE O–H , these data provide strong evidence for the coordination and hemilability of the protonated O-atom in H 1 and represents the first example of the phenolic Mn( i )–O linkage and a rare example of a “soft-homolysis” intermediate in the bond-weakening catalysis paradigm. 
                        more » 
                        « less   
                    
                            
                            Efficient photorelease of carbon monoxide from a luminescent tricarbonyl rhenium( i ) complex incorporating pyridyl-1,2,4-triazole and phosphine ligands
                        
                    
    
            Precise control over the production of carbon monoxide (CO) is essential to exploit the therapeutic potential of this molecule. The development of photoactive CO-releasing molecules (PhotoCORMs) is therefore a promising route for future clinical applications. Herein, a tricarbonyl-rhenium( i ) complex ( 1-TPP ), which incorporates a phosphine moiety as ancilliary ligand for boosting the photochemical reactivity, and a pyridyltriazole bidentate ligand with appended 2-phenylbenzoxazole moiety for the purpose of photoluminescence, was synthesized and characterized from a chemical and crystallographic point of view. Upon irradiation in the near-UV range, complex 1-TPP underwent fast photoreaction, which was monitored through changes of the UV-vis absorption and phosphorescence spectra. The photoproducts ( i.e. the dicarbonyl solvento complex 2 and one CO molecule) were identified using FTIR, 1 H NMR and HRMS. The results were interpreted on the basis of DFT/TD-DFT calculations. The effective photochemical release of CO associated with clear optical variations (the emitted light passed from green to orange-red) could make 1-TPP the prototype of new photochemically-active agents, potentially useful for integration in photoCORM materials. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1659782
- PAR ID:
- 10403213
- Date Published:
- Journal Name:
- Dalton Transactions
- Volume:
- 50
- Issue:
- 4
- ISSN:
- 1477-9226
- Page Range / eLocation ID:
- 1313 to 1323
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            High-valent nitridorhenium( v ) complexes containing PNP ligands: implications of ligand flexibilityThe synthesis of (PNP)Re(N)X (PNP = [2-P(CHMe 2 ) 2 -4-MeC 6 H 3 ] 2 N, X = Cl and Me) complexes is described. The methylnitridorhenium complex 3 was found to react differently with CO and isocyanides, leading to the isolation of a Re( v ) acyl complex 4 and an isocyanide adduct 6 . Two parallel pathways were observed for the reaction of 3 with CO: (1) CO inserts into the Re–Me bond to afford 4 , and (2) 3 isomerizes by distortion of the aryl backbone of the PNP ligand to afford the isomer 3′ . This is followed by the reaction of 3′ with CO to afford the tricarbonyl complex 5 , which was fully characterized. The contrasting reaction of 3 with 2,6-dimethylphenyl isocyanide lends further support for the proposed isomerization pathway. DFT (M06) calculations suggest that insertion of CNR into the Re–Me bond (27.2 kcal mol −1 ) is inaccessible at room temperature. Instead the substrate adds to the metal center via the most accessible face i.e. syn to the rhenium–nitrido bond, to afford 6 . The addition of CO to isomer 3′ is proposed to proceed with a similar mechanism to 2,6-dimethylphenyl isocyanide.more » « less
- 
            Recently, the choice of ligand and geometric control of mononuclear complexes, which can affect the relaxation pathways and blocking temperature, have received wide attention in the field of single-ion magnets (SIMs). To find out the influence of the coordination environment on SIMs, two four-coordinate mononuclear Co( ii ) complexes [NEt 4 ][Co(PPh 3 )X 3 ] (X = Cl − , 1; Br − , 2) have been synthesized and studied by X-ray single crystallography, magnetic measurements, high-frequency and -field EPR (HF-EPR) spectroscopy and theoretical calculations. Both complexes are in a cubic space group Pa 3̄ (No. 205), containing a slightly distorted tetrahedral moiety with crystallographically imposed C 3 v symmetry through the [Co(PPh 3 )X 3 ] − anion. The direct-current (dc) magnetic data and HF-EPR spectroscopy indicated the anisotropic S = 3/2 spin ground states of the Co( ii ) ions with the easy-plane anisotropy for 1 and 2. Ab initio calculations were performed to confirm the positive magnetic anisotropies of 1 and 2. Frequency- and temperature-dependent alternating-current (ac) magnetic susceptibility measurements revealed slow magnetic relaxation for 1 and 2 at an applied dc field. Finally, the magnetic properties of 1 and 2 were compared to those of other Co( ii ) complexes with a [CoAB 3 ] moiety.more » « less
- 
            null (Ed.)Utilizing a terphenyl bisanilide ligand, two Dy( iii ) compounds [K(DME) n ][L Ar Dy(X) 2 ] (L Ar = {C 6 H 4 [(2,6- i PrC 6 H 3 )NC 6 H 4 ] 2 } 2− ), X = Cl ( 1 ) and X = I ( 2 ) were synthesized. The ligand imposes an unusual see-saw shaped molecular geometry leading to a coordinatively unsaturated metal complex with near-linear N–Dy–N (avg. 159.9° for 1 and avg. 160.4° for 2 ) angles. These compounds exhibit single-molecule magnet (SMM) behavior with significant uniaxial magnetic anisotropy as a result of the transverse coordination of the bisanilide ligand which yields high energy barriers to magnetic spin reversal of U eff = 1334 K/927 cm −1 ( 1 ) and 1278 K/888 cm −1 ( 2 ) in zero field. Ab initio calculations reveal that the dominant crystal field of the bisanilide ligand controls the orientation of the main magnetic axis which runs nearly parallel to the N–Dy–N bonds, despite the identity of the halide ligand. Analysis of the relaxation dynamics reveals a ca. 14-fold decrease in the rate of quantum tunneling of the magnetisation when X = I ( 2 ). Most notably, the relaxation times were on average 5.6× longer at zero field when the heavier group 17 congener was employed. However, no direct evidence of a heavy atom effect on the Orbach relaxation was obtained as the height of the barrier is defined by the dominant bisanilide ligand.more » « less
- 
            A series of multinuclear metallocenes composed of a t Bu salophen dianion bound to two rare earth metal ions, where each is encased in a bis-pentamethylcyclopentadienyl scaffold, was realized. The isolated molecules (Cp* 2 RE) 2 (μ- t Bu salophen), where RE = Gd (1), Dy (2), and Y (3), constitute the first salophen-bridged metallocene complexes for any metal ion. 1–3 were characterised by X-ray crystallography, cyclic voltammetry, IR, NMR, and UV-Vis-NIR spectroscopy. Cyclic voltammograms of 1–3 excitingly exhibit quasi-reversable features attributed to the ( t Bu salophen 2− / t Bu salophen 3− ˙) redox couple. DFT calculations on 3 uncovered the highest occupied molecular orbital to be primarily localized on the metallocene and phenolate moieties of the t Bu salophen ligand. Furthermore, the nuclear spin I = ½ for yttrium allowed the collection of 89 Y NMR spectra for 3. Magnetic studies revealed slow magnetic relaxation, placing 2 among dysprosocenium-based single-molecule magnets containing a doubly anionic ligand in the equatorial plane.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    