skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bioanalytical method development and validation of corynantheidine, a kratom alkaloid, using UPLC-MS/MS, and its application to preclinical pharmacokinetic studies
Award ID(s):
1659782
PAR ID:
10403223
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Pharmaceutical and Biomedical Analysis
Volume:
180
Issue:
C
ISSN:
0731-7085
Page Range / eLocation ID:
113019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supercritical fluids are typically electrosprayed using an organic solvent makeup flow to facilitate continuous electrical connection and enhancement of electrospray stability. This results in sample dilution, loss in sensitivity, and potential phase separation. Premixing the supercritical fluid with organic solvent has shown substantial benefits to electrospray efficiency and increased analyte charge state. Presented here is a nanospray mass spectrometry system for supercritical fluids (nSF-MS). This split flow system used small i.d. capillaries, heated interface, inline frit, and submicron emitter tips to electrospray quaternary alkyl amines solvated in supercritical CO2 with a 10% methanol modifier. Analyte signal response was evaluated as a function of total system flow rate (0.5–1.5 mL/min) that is split to nanospray a supercritical fluid with linear flow rates between 0.07 and 0.42 cm/sec and pressure ranges (15–25 MPa). The nSF system showed mass-sensitive detection based on increased signal intensity for increasing capillary i.d. and analyte injection volume. These effects indicate efficient solvent evaporation for the analysis of quaternary amines. Carrier additives generally decreased signal intensity. Comparison of the nSF-MS system to the conventional SF makeup flow ESI showed 10-fold signal intensity enhancement across all the capillary i.d.s. The nSF-MS system likely achieves rapid solvent evaporation of the SF at the emitter point. The developed system combined the benefits of the nanoemitters, sCO2, and the low modifier percentage which gave rise to enhancement in MS detection sensitivity. 
    more » « less
  2. Macrocyclic poly(glycidyl phenyl ether) (pGPE) synthesized via zwitterionic ring opening polymerization is typically contaminated by chains with linear and tadpole architecture. Although mass spectrometry (MS) analysis can readily confirm the presence of the linear byproduct, due to its unique mass, it is unable to differentiate between the cyclic and tadpole structures, which are constitutional isomers produced by backbiting reactions in monomeric or dimeric chains, respectively. To overcome this problem, ultraperformance reversed-phase liquid chromatography interfaced with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) was employed. The separation achieved by UPLC revealed that the tadpole isomer elutes before the cyclic structure because of the increased polarity afforded by its distinctive substituents. The ratio of tadpole to cyclic species increased with the degree of polymerization, in agreement with the synthetic method used, as the potential for forming tadpole structures by backbiting is entropically favored in longer polymer chains. Once separated, the two isomers could be independently characterized by tandem mass spectrometry. The macrocyclic and tadpole species exhibit unique fragmentation patterns, including structurally diagnostic fragments for each structure. 
    more » « less
  3. Laser ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS) imaging and matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) are complementary methods that measure distributions of elements and biomolecules in tissue sections. Quantitative correlations of the information provided by these two imaging modalities requires that the datasets be registered in the same coordinate system, allowing for pixel-by-pixel comparisons. We describe here a computational workflow written in Python that accomplishes this registration, even for adjacent tissue sections, with accuracies within ±50 μm. The value of this registration process is demonstrated by correlating images of tissue sections from mice injected with gold nanomaterial drug delivery systems. Quantitative correlations of the nanomaterial delivery vehicle, as detected by LA-ICP-MS imaging, with biochemical changes, as detected by MALDI-MSI, provide deeper insight into how nanomaterial delivery systems influence lipid biochemistry in tissues. Moreover, the registration process allows the more precise images associated with LA-ICP-MS imaging to be leveraged to achieve improved segmentation in MALDI-MS images, resulting in the identification of lipids that are most associated with different sub-organ regions in tissues. 
    more » « less