Bioanalytical method development and validation of corynantheidine, a kratom alkaloid, using UPLC-MS/MS, and its application to preclinical pharmacokinetic studies
- Award ID(s):
- 1659782
- PAR ID:
- 10403223
- Date Published:
- Journal Name:
- Journal of Pharmaceutical and Biomedical Analysis
- Volume:
- 180
- Issue:
- C
- ISSN:
- 0731-7085
- Page Range / eLocation ID:
- 113019
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Supercritical fluids are typically electrosprayed using an organic solvent makeup flow to facilitate continuous electrical connection and enhancement of electrospray stability. This results in sample dilution, loss in sensitivity, and potential phase separation. Premixing the supercritical fluid with organic solvent has shown substantial benefits to electrospray efficiency and increased analyte charge state. Presented here is a nanospray mass spectrometry system for supercritical fluids (nSF-MS). This split flow system used small i.d. capillaries, heated interface, inline frit, and submicron emitter tips to electrospray quaternary alkyl amines solvated in supercritical CO2 with a 10% methanol modifier. Analyte signal response was evaluated as a function of total system flow rate (0.5–1.5 mL/min) that is split to nanospray a supercritical fluid with linear flow rates between 0.07 and 0.42 cm/sec and pressure ranges (15–25 MPa). The nSF system showed mass-sensitive detection based on increased signal intensity for increasing capillary i.d. and analyte injection volume. These effects indicate efficient solvent evaporation for the analysis of quaternary amines. Carrier additives generally decreased signal intensity. Comparison of the nSF-MS system to the conventional SF makeup flow ESI showed 10-fold signal intensity enhancement across all the capillary i.d.s. The nSF-MS system likely achieves rapid solvent evaporation of the SF at the emitter point. The developed system combined the benefits of the nanoemitters, sCO2, and the low modifier percentage which gave rise to enhancement in MS detection sensitivity.more » « less
-
Fatty acid-based ignitable liquids (ILs), such as biodiesels and bio-based lighter fluids, represent a growing class of accelerants with limited forensic characterization. In this study, we applied gas chromatography–mass spectrometry (GC–MS) and direct analysis in real time mass spectrometry (DART–MS) to analyze plant oil-derived IL residues on wood and fabric substrates. ILs were prepared from ten different plant oils, subjected to burning, and extracted from fire debris using the ASTM E1412 activated charcoal method. GC–MS analysis resolved characteristic fatty acid methyl esters (FAMEs) and identified diagnostic fragment ions (m/z 55, 67, 74, 79). The fragmentation patterns of unsaturated and saturated FAMEs were systematically examined and compared against experimental data and reference spectra from online databases, demonstrating strong agreement and validating the reliability of these ion ratios as qualitative indicators of FAME saturation. DART–MS enabled rapid confirmation of major unsaturated FAMEs through the detection of protonated molecular ions, offering complementary identification without chromatographic separation. Chemometric analysis using principal component analysis (PCA) and analysis of variance-PCA revealed that FAME profiles were strongly dependent on the IL sources and remained reliable across replicate preparations and synthesis conditions, while substrate and combustion effects were mitigated using targeted ion extraction. These findings demonstrate the practical casework relevance of combining GC–MS and DART–MS for the detection and classification of fatty acid–based ILs in fire debris, providing robust chemical evidence to support arson investigations and to guide the inclusion of these emerging accelerants in forensic ignitable-liquid classification schemes.more » « less
-
Macrocyclic poly(glycidyl phenyl ether) (pGPE) synthesized via zwitterionic ring opening polymerization is typically contaminated by chains with linear and tadpole architecture. Although mass spectrometry (MS) analysis can readily confirm the presence of the linear byproduct, due to its unique mass, it is unable to differentiate between the cyclic and tadpole structures, which are constitutional isomers produced by backbiting reactions in monomeric or dimeric chains, respectively. To overcome this problem, ultraperformance reversed-phase liquid chromatography interfaced with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) was employed. The separation achieved by UPLC revealed that the tadpole isomer elutes before the cyclic structure because of the increased polarity afforded by its distinctive substituents. The ratio of tadpole to cyclic species increased with the degree of polymerization, in agreement with the synthetic method used, as the potential for forming tadpole structures by backbiting is entropically favored in longer polymer chains. Once separated, the two isomers could be independently characterized by tandem mass spectrometry. The macrocyclic and tadpole species exhibit unique fragmentation patterns, including structurally diagnostic fragments for each structure.more » « less
An official website of the United States government

