Finite generation for valuations computing stability thresholds and applications to K-stability
                        
                    More Like this
- 
            null (Ed.)Graph parameters such as the clique number, the chromatic number, and the independence number are central in many areas, ranging from computer networks to linguistics to computational neuroscience to social networks. In particular, the chromatic number of a graph (i.e., the smallest number of colors needed to color all vertices such that no two adjacent vertices are of the same color) can be applied in solving practical tasks as diverse as pattern matching, scheduling jobs to machines, allocating registers in compiler optimization, and even solving Sudoku puzzles. Typically, however, the underlying graphs are subject to (often minor) changes. To make these applications of graph parameters robust, it is important to know which graphs are stable for them in the sense that adding or deleting single edges or vertices does not change them. We initiate the study of stability of graphs for such parameters in terms of their computational complexity. We show that, for various central graph parameters, the problem of determining whether or not a given graph is stable is complete for $$\Phi_2^p$$, a well-known complexity class in the second level of the polynomial hierarchy, which is also known as “parallel access to NP.”more » « less
- 
            To any projective pair (X,B) equipped with an ample Q-line bundle L (or even any ample numerical class), we attach a new invariant $$\beta(\mu)$$, defined on convex combinations $$\mu$$ of divisorial valuations on X , viewed as point masses on the Berkovich analytification of X . The construction is based on non-Archimedean pluripotential theory, and extends the Dervan–Legendre invariant for a single valuation – itself specializing to Li and Fujita’s valuative invariant in the Fano case, which detects K-stability. Using our $$\beta$$-invariant, we define divisorial (semi)stability, and show that divisorial semistability implies (X,B) is sublc (i.e. its log discrepancy function is non-negative), and that divisorial stability is an open condition with respect to the polarization L. We also show that divisorial stability implies uniform K-stability in the usual sense of (ample) test configurations, and that it is equivalent to uniform K-stability with respect to all norms/filtrations on the section ring of (X,L), as considered by Chi Li.more » « less
- 
            In this paper, we perform a stability analysis for classes of second and third order accurate strong-stability-preserving modified Patankar–Runge–Kutta (SSPMPRK) schemes, which were introduced in Huang and Shu [ J. Sci. Comput. 78 (2019) 1811–1839] and Huang et al . [ J. Sci. Comput. 79 (2019) 1015–1056] and can be used to solve convection equations with stiff source terms, such as reactive Euler equations, with guaranteed positivity under the standard CFL condition due to the convection terms only. The analysis allows us to identify the range of free parameters in these SSPMPRK schemes in order to ensure stability. Numerical experiments are provided to demonstrate the validity of the analysis.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    