Abstract Mobile robots with manipulation capability are a key technology that enables flexible robotic interactions, large area covering and remote exploration. This paper presents a novel class of actuation-coordinated mobile parallel robots (ACMPRs) that utilize parallel mechanism configurations and perform hybrid moving and manipulation functions through coordinated wheel actuators. The ACMPRs differ with existing mobile manipulators by their unique combination of the mobile wheel actuators and the parallel mechanism topology through prismatic joint connections. Common motion of the wheels will provide mobile function while their relative motion will actuate the parallel manipulation function. This new concept reduces actuation requirement and increases manipulation accuracy and mobile motion stability through coordinated and connected wheel actuators comparing with existing mobile parallel manipulators. The relative wheel location on the base frame also enables a reconfigurable base size with variable moving stability on the ground. The basic concept and general type synthesis are introduced and followed by kinematics and inverse dynamics analysis of a selected three limb ACMPR. A numerical simulation also illustrates the dynamics model and the motion property of the new mobile parallel robot (MPR) followed by a prototype-based experimental validation. The work provides a basis for introducing this new class of robots for potential applications in surveillance, industrial automation, construction, transportation, human assistance, medical applications, and other operations in extreme environment such as nuclear plants, Mars, etc. 
                        more » 
                        « less   
                    
                            
                            On-demand, remote and lossless manipulation of biofluid droplets
                        
                    
    
            The recent global outbreaks of epidemics and pandemics have shown us that we are severely under-prepared to cope with infectious agents. Exposure to infectious agents present in biofluids ( e.g. , blood, saliva, urine etc. ) poses a severe risk to clinical laboratory personnel and healthcare workers, resulting in hundreds of millions of hospital-acquired and laboratory-acquired infections annually. Novel technologies that can minimize human exposure through remote and automated handling of infectious biofluids will mitigate such risk. In this work, we present biofluid manipulators, which allow on-demand, remote and lossless manipulation of virtually any liquid droplet. Our manipulators are designed by integrating thermo-responsive soft actuators with superomniphobic surfaces. Utilizing our manipulators, we demonstrate on-demand, remote and lossless manipulation of biofluid droplets. We envision that our biofluid manipulators will not only reduce manual operations and minimize exposure to infectious agents, but also pave the way for developing inexpensive, simple and portable robotic systems, which can allow point-of-care operations, particularly in developing nations. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1947454
- PAR ID:
- 10403389
- Date Published:
- Journal Name:
- Materials Horizons
- Volume:
- 9
- Issue:
- 11
- ISSN:
- 2051-6347
- Page Range / eLocation ID:
- 2863 to 2871
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Active biofluid management is central to the realization of wearable bioanalytical platforms that are poised to autonomously provide frequent, real-time, and accurate measures of biomarkers in epidermally-retrievable biofluids (e.g., sweat). Accordingly, here, a programmable epidermal microfluidic valving system is devised, which is capable of biofluid sampling, routing, and compartmentalization for biomarker analysis. At its core, the system is a network of individually-addressable microheater-controlled thermo-responsive hydrogel valves, augmented with a pressure regulation mechanism to accommodate pressure built-up, when interfacing sweat glands. The active biofluid control achieved by this system is harnessed to create unprecedented wearable bioanalytical capabilities at both the sensor level (decoupling the confounding influence of flow rate variability on sensor response) and the system level (facilitating context-based sensor selection/protection). Through integration with a wireless flexible printed circuit board and seamless bilateral communication with consumer electronics (e.g., smartwatch), contextually-relevant (scheduled/on-demand) on-body biomarker data acquisition/display was achieved.more » « less
- 
            The occurrence of extreme events, either natural or man-made, puts stress on both the physical infrastructure, causing damages and failures, and the financial system. The following recovery process requires a large amount of resources from financial agents, such as insurance companies. If the demand for funds overpasses their capacity, these financial agents cannot fulfill their obligations, thus defaulting, without being able to deliver the requested funds. However, agents can share risk among each other, according to specific agreements. Our goal is to investigate the relationship between these agreements and the overall response of the physical/financial systems to extreme events and to identify the optimal set of agreements, according to some risk-based metrics. We model the system as a directed and weighted graph, where nodes represent financial agents and links agreements among these. Each node faces an external demand of funds coming from the physical assets, modeled as a random variable, that can be transferred to other nodes, via the directed edges. For a given probabilistic model of demands and structure of the graph, we evaluate metrics such as the expected number of defaults, and we identify the graph configuration which optimizes the metric. The identified graph suggests to the agents a set of agreements to minimize global risk.more » « less
- 
            The effectiveness of digital contact tracing during extended outbreaks of airborne infectious diseases, such as COVID-19, influenza, or RSV, can be hindered by limited social compliance and delays in real-world testing. Prior work has shown the utility of graph learning for bidirectional contact tracing and multi-agent reinforcement learning (MARL) for disease mitigation; however, they rely on post-hoc analysis and full testing compliance, thus limiting real-time applicability. To address these limitations, we propose a new framework for online automated bidirectional contact tracing and disease-aware navigation. Our framework iteratively identifies infectious culprits, infers individual health statuses, and deploys agents to minimize infectious exposure without requiring Oracle health information. Our proposed framework achieves an average online backwards tracing F1-score of 92% and estimates the total case counts within 5% accuracy, even under conditions of probabilistic testing with significant social hesitancy. Additionally, our proposed agent-based navigation system can reduce the disease spread by 29%. These results demonstrate the framework’s potential to address critical gaps in traditional disease surveillance and mitigation models and improve real-time public health interventions.more » « less
- 
            The development of compliant robotic manipulators which can show length change, compliance and dexterity could assist many challenging applications. Potential applications range from dexterous manipulation, robotic surgery or exploration of challenging environments. Despite significant developments in both fabrication and control approaches for continuum body manipulators, there have been few demonstrations of continuum body systems which display all these properties. We present a method for fabricating a continuum manipulation which shows extension, high force movements and a range of dexterous position. This approach uses 3D printing to create a flexible rack and pinion system. These high torque mechanisms are mounted at points along the 3D printed tracks to allow complex shape control of the continuum system. A controller has been also been developed based on a Piecewise Constant Curvature approximation to allow the position of the tip of the manipulator to be controlled, and motion paths to be followed. In this work, we show the force capabilities of this manipulator and demonstrate how multiple segments can be created for more complex movements.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    