skip to main content

Title: Modern air-sea flux distributions reduce uncertainty in the future ocean carbon sink

The ocean has absorbed about 25% of the carbon emitted by humans to date. To better predict how much climate will change, it is critical to understand how this ocean carbon sink will respond to future emissions. Here, we examine the ocean carbon sink response to low emission (SSP1-1.9, SSP1-2.6), intermediate emission (SSP2-4.5, SSP5-3.4-OS), and high emission (SSP5-8.5) scenarios in CMIP6 Earth System Models and in MAGICC7, a reduced-complexity climate carbon system model. From 2020–2100, the trajectory of the global-mean sink approximately parallels the trajectory of anthropogenic emissions. With increasing cumulative emissions during this century (SSP5-8.5 and SSP2-4.5), the cumulative ocean carbon sink absorbs 20%–30% of cumulative emissions since 2015. In scenarios where emissions decline, the ocean absorbs an increasingly large proportion of emissions (up to 120% of cumulative emissions since 2015). Despite similar responses in all models, there remains substantial quantitative spread in estimates of the cumulative sink through 2100 within each scenario, up to 50 PgC in CMIP6 and 120 PgC in the MAGICC7 ensemble. We demonstrate that for all but SSP1-2.6, approximately half of this future spread can be eliminated if model results are adjusted to agree with modern observation-based estimates. Considering the spatial distribution of air-sea CO2fluxes in CMIP6, we find significant zonal-mean divergence from the suite of newly-available observation-based constraints. We conclude that a significant portion of future ocean carbon sink uncertainty is attributable to modern-day errors in the mean state of air-sea CO2fluxes, which in turn are associated with model representations of ocean physics and biogeochemistry. Bringing models into agreement with modern observation-based estimates at regional to global scales can substantially reduce uncertainty in future role of the ocean in absorbing anthropogenic CO2from the atmosphere and mitigating climate change.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Page Range / eLocation ID:
Article No. 044011
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two decades into the 21st century there is growing evidence for global impacts of Antarctic and Southern Ocean climate change. Reliable estimates of how the Antarctic climate system would behave under a range of scenarios of future external climate forcing are thus a high priority. Output from new model simulations coordinated as part of the Coupled Model Intercomparison Project Phase 6 (CMIP6) provides an opportunity for a comprehensive analysis of the latest generation of state‐of‐the‐art climate models following a wider range of experiment types and scenarios than previous CMIP phases. Here the main broad‐scale 21st century Antarctic projections provided by the CMIP6 models are shown across four forcing scenarios: SSP1‐2.6, SSP2‐4.5, SSP3‐7.0 and SSP5‐8.5. End‐of‐century Antarctic surface‐air temperature change across these scenarios (relative to 1995–2014) is 1.3, 2.5, 3.7 and 4.8°C. The corresponding proportional precipitation rate changes are 8, 16, 24 and 31%. In addition to these end‐of‐century changes, an assessment of scenario dependence of pathways of absolute and global‐relative 21st century projections is conducted. Potential differences in regional response are of particular relevance to coastal Antarctica, where, for example, ecosystems and ice shelves are highly sensitive to the timing of crossing of key thresholds in both atmospheric and oceanic conditions. Overall, it is found that the projected changes over coastal Antarctica do not scale linearly with global forcing. We identify two factors that appear to contribute: (a) a stronger global‐relative Southern Ocean warming in stabilisation (SSP2‐4.5) and aggressive mitigation (SSP1‐2.6) scenarios as the Southern Ocean continues to warm and (b) projected recovery of Southern Hemisphere stratospheric ozone and its effect on the mid‐latitude westerlies. The major implication is that over coastal Antarctica, the surface warming by 2100 is stronger relative to the global mean surface warming for the low forcing compared to high forcing future scenarios.

    more » « less
  2. Abstract

    Accumulating evidence on the impact of climate change on droughts, highlights the necessity for developing effective adaptation and mitigation strategies. Changes in future drought risk and severity in Australia are quantified by analyzing nine Coupled Model Intercomparison Project Phase 6 climate models. Historic conditions (1981–2014) and projections for mid-century (2015–2050) and end-century (2051–2100) from four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0 and SSP5-8.5) are examined. Drought events are identified using both the standardized precipitation index and the standardized precipitation evapotranspiration index. The spatial-temporal evolution of droughts is addressed by quantifying the areal extent of regions under moderate, severe and extreme drought from historic to end-century periods. Drought characteristics derived from the models are used to develop severity–duration–frequency curves using an extreme value analysis method based on ordinary events. Under SSP5-8.5, a tenfold increase in the area subject to extreme droughts is projected by the end of the century, while a twofold increase is projected under SSP1-2.6. Increase in extreme droughts frequency is found to be more pronounced in the southern and western regions of Australia. For example, frequency analysis of 12 month duration droughts for the state of South Australia indicates that, under SSP5-8.5, drought severities currently expected to happen on average only once in 100 years could happen as often as once in 3 years by the end of the century, with a 33 times higher risk (from 1% to 33%), while under SSP1-2.6, the increase is fivefold (1%–5%). The significant difference in the increase of drought risk between the two extreme scenarios highlights the urge to reduce greenhouse gases emission in order to avoid extreme drought conditions to become the norm by the end of the century.

    more » « less
  3. null (Ed.)
    The Arctic has experienced a warming rate higher than the global mean in the past decades, but previous studies show that there are large uncertainties associated with future Arctic temperature projections. In this study, near- surface mean temperatures in the Arctic are analyzed from 22 models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). Compared with the ERA5 reanalysis, most CMIP6 models underestimate the observed mean temperature in the Arctic during 1979–2014. The largest cold biases are found over the Greenland Sea the Barents Sea, and the Kara Sea. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the multimodel ensemble mean of 22 CMIP6 models exhibits significant Arctic warming in the future and the warming rate is more than twice that of the global/Northern Hemisphere mean. Model spread is the largest contributor to the overall uncertainty in projections, which accounts for 55.4% of the total uncertainty at the start of projections in 2015 and remains at 32.9% at the end of projections in 2095. Internal variability uncertainty accounts for 39.3% of the total uncertainty at the start of projections but decreases to 6.5% at the end of the twenty-first century, while scenario uncertainty rapidly increases from 5.3% to 60.7% over the period from 2015 to 2095. It is found that the largest model uncertainties are consistent cold bias in the oceanic regions in the models, which is connected with excessive sea ice area caused by the weak Atlantic poleward heat transport. These results suggest that large intermodel spread and uncertainties exist in the CMIP6 models’ simulation and projection of the Arctic near- surface temperature and that there are different responses over the ocean and land in the Arctic to greenhouse gas forcing. Future research needs to pay more attention to the different characteristics and mechanisms of Arctic Ocean and land warming to reduce the spread. 
    more » « less
  4. Abstract. Secondary organic aerosol (SOA) is a dominant contributor of fine particulate matter in the atmosphere, but the complexity of SOA formation chemistry hinders the accurate representation of SOA in models. Volatility-based SOA parameterizations have been adopted in many recent chemistry modeling studies and have shown a reasonable performance compared to observations. However, assumptions made in these empirical parameterizations can lead to substantial errors when applied to future climatic conditions as they do not include the mechanistic understanding of processes but are rather fitted to laboratory studies of SOA formation. This is particularly the case for SOA derived from isoprene epoxydiols (IEPOX SOA), for which we have a higher level of understanding of the fundamental processes than is currently parameterized in most models. We predict future SOA concentrations using an explicit mechanism and compare the predictions with the empirical parameterization based on the volatility basis set (VBS) approach. We then use the Community Earth System Model 2 (CESM2.1.0) with detailed isoprene chemistry and reactive uptake processes for the middle and end of the 21st century under four Shared Socioeconomic Pathways (SSPs): SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5. With the explicit chemical mechanism, we find that IEPOX SOA is predicted to increase on average under all future SSP scenarios but with some variability in the results depending on regions and the scenario chosen. Isoprene emissions are the main driver of IEPOX SOA changes in the future climate, but the IEPOX SOA yield from isoprene emissions also changes by up to 50 % depending on the SSP scenario, in particular due to different sulfur emissions. We conduct sensitivity simulations with and without CO2 inhibition of isoprene emissions that is highly uncertain, which results in factor of 2 differences in the predicted IEPOX SOA global burden, especially for the high-CO2 scenarios (SSP3–7.0 and SSP5–8.5). Aerosol pH also plays a critical role in the IEPOX SOA formation rate, requiring accurate calculation of aerosol pH in chemistry models. On the other hand, isoprene SOA calculated with the VBS scheme predicts a nearly constant SOA yield from isoprene emissions across all SSP scenarios; as a result, it mostly follows isoprene emissions regardless of region and scenario. This is because the VBS scheme does not consider heterogeneous chemistry; in other words, there is no dependency on aerosol properties. The discrepancy between the explicit mechanism and VBS parameterization in this study is likely to occur for other SOA components as well, which may also have dependencies that cannot be captured by VBS parameterizations. This study highlights the need for more explicit chemistry or for parameterizations that capture the dependence on key physicochemical drivers when predicting SOA concentrations for climate studies. 
    more » « less
  5. Abstract

    The Arctic has undergone dramatic changes in sea ice cover and the hydrologic cycle, both of which strongly impact the freshwater storage in, and export from, the Arctic Ocean. Here we analyze Arctic freshwater storage and fluxes in seven climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and assess their performance over the historical period (1980–2000) and in two future emissions scenarios, SSP1‐2.6 and SSP5‐8.5. Similar to CMIP5, substantial differences exist between the models' Arctic mean states and the magnitude of their 21st century storage and flux changes. In the historical simulation, most models disagree with observations over 1980–2000. In both future scenarios, the models show an increase in liquid freshwater storage and a reduction in solid storage and fluxes through the major Arctic gateways (Bering Strait, Fram Strait, Davis Strait, and the Barents Sea Opening) that is typically larger for SSP5‐8.5 than SSP1‐2.6. The liquid fluxes are driven by both volume and salinity changes, with models exhibiting a change in sign (relative to 1980–2000) of the freshwater flux through the Barents Sea Opening by mid‐century, little change in the Bering Strait flux, and increased export from the remaining straits by the end of the 21st century. In the straits west of Greenland (Nares, Barrow, and Davis straits), the models disagree on the behavior of the liquid freshwater export in the early‐to‐mid 21st century due to differences in the magnitude and timing of a simulated decrease in the volume flux.

    more » « less