Abstract In this work we examine synthetic antiferromagnetic structures consisting of two, three, and four antiferromagnetic coupled layers, i.e. bilayers, trilayers, and tetralayers. We vary the thickness of the ferromagnetic layers across all structures and, using a macrospin formalism, find that the nearest neighbor exchange interaction between layers is consistent across all structures for a given thickness of the ferromagnetic layer. Our model and experimental results demonstrate significant differences in how the static equilibrium states of even and odd-layered structures evolve as a function of the external field. Even layered structures continuously evolve from a collinear antiferromagnetic state to a spin canted non-collinear magnetic configuration that is mirror-symmetric about the external field. In contrast, odd-layered structures begin with a ferrimagnetic ground state; at a critical field, the ferrimagnetic ground state evolves into a non-collinear state with broken symmetry. Specifically, the magnetic moments found in the odd-layered samples possess stable static equilibrium states that are no longer mirror-symmetric about the external field after a critical field is reached.
more »
« less
Observation of coherently coupled cation spin dynamics in an insulating ferrimagnetic oxide
Many technologically useful magnetic oxides are ferrimagnetic insulators, which consist of chemically distinct cations. Here, we examine the spin dynamics of different magnetic cations in ferrimagnetic NiZnAl-ferrite (Ni0.65Zn0.35Al0.8Fe1.2O4) under continuous microwave excitation. Specifically, we employ time-resolved x-ray ferromagnetic resonance to separately probe Fe2+/3+ and Ni2+ cations on different sublattice sites. Our results show that the precessing cation moments retain a rigid, collinear configuration to within ≈2°. Moreover, the effective spin relaxation is identical to within <10% for all magnetic cations in the ferrite. Thus, we validate the oft-assumed “ferromagnetic-like” dynamics in the resonantly driven ferrimagnetic oxide: the magnetic moments from different cations precess as a coherent, collective magnetization, despite the high contents of nonmagnetic Zn2+ and Al3+ diluting the exchange interactions.
more »
« less
- Award ID(s):
- 1952957
- PAR ID:
- 10403441
- Publisher / Repository:
- American Institute of Physics
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 122
- Issue:
- 13
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Spin-orbit torques (SOTs) have been widely understood as an interfacial transfer of spin that is independent of the bulk properties of the magnetic layer. Here, we report that SOTs acting on ferrimagnetic Fe x Tb 1- x layers decrease and vanish upon approaching the magnetic compensation point because the rate of spin transfer to the magnetization becomes much slower than the rate of spin relaxation into the crystal lattice due to spin-orbit scattering. These results indicate that the relative rates of competing spin relaxation processes within magnetic layers play a critical role in determining the strength of SOTs, which provides a unified understanding for the diverse and even seemingly puzzling SOT phenomena in ferromagnetic and compensated systems. Our work indicates that spin-orbit scattering within the magnet should be minimized for efficient SOT devices. We also find that the interfacial spin-mixing conductance of interfaces of ferrimagnetic alloys (such as Fe x Tb 1- x ) is as large as that of 3 d ferromagnets and insensitive to the degree of magnetic compensation.more » « less
-
Abstract We present the first theoretical and experimental evidence of time-resolved dynamic x-ray magnetic linear dichroism (XMLD) measurements of GHz magnetic precessions driven by ferromagnetic resonance in both metallic and insulating thin films. Our findings show a dynamic XMLD in both ferromagnetic Ni80Fe20and ferrimagnetic Ni0.65Zn0.35Al0.8Fe1.2O4for different measurement geometries and linear polarizations. A detailed analysis of the observed signals reveals the importance of separating different harmonic components in the dynamic signal in order to identify the XMLD response without the influence of competing contributions. In particular, RF magnetic resonance elicits a large dynamic XMLD response at the fundamental frequency under experimental geometries with oblique x-ray polarization. The geometric range and experimental sensitivity can be improved by isolating the 2ωFourier component of the dynamic response. These results illustrate the potential of dynamic XMLD and represent a milestone accomplishment toward the study of GHz spin dynamics in systems beyond ferromagnetic order.more » « less
-
Abstract In this work high-frequency magnetization dynamics and statics of artificial spin-ice lattices with different geometric nanostructure array configurations are studied where the individual nanostructures are composed of ferromagnetic/non-magnetic/ferromagnetic trilayers with different non-magnetic thicknesses. These thickness variations enable additional control over the magnetic interactions within the spin-ice lattice that directly impacts the resulting magnetization dynamics and the associated magnonic modes. Specifically the geometric arrangements studied are square, kagome and trigonal spin ice configurations, where the individual lithographically patterned nanomagnets (NMs) are trilayers, made up of two magnetic layers of of 30 nm and 70 nm thickness respectively, separated by a non-magnetic copper layer of either 2 nm or 40 nm. We show that coupling via the magnetostatic interactions between the ferromagnetic layers of the NMs within square, kagome and trigonal spin-ice lattices offers fine-control over magnetization states and magnetic resonant modes. In particular, the kagome and trigonal lattices allow tuning of an additional mode and the spacing between multiple resonance modes, increasing functionality beyond square lattices. These results demonstrate the ability to move beyond quasi-2D single magnetic layer nanomagnetics via control of the vertical interlayer interactions in spin ice arrays. This additional control enables multi-mode magnonic programmability of the resonance spectra, which has potential for magnetic metamaterials for microwave or information processing applications.more » « less
-
Here, we present results of combined experimental and computations study of V2CoAl, a Heusler alloy that exhibits nearly perfect spin-polarization. Our calculations indicate that this material maintains a high degree of spin-polarization (over 90%) in the wide range of lattice parameters, except at the largest considered unit cell volume. The magnetic alignment of V2CoAl is ferrimagnetic, due to the antialignment of the magnetic moments of vanadium atoms in their two sublattices. The calculated total magnetic moment per formula unit is nearly integer at the optimal lattice parameter and at the smaller volumes of the unit cell, but it deviated from the integer values as the unit cell expands. This is consistent with the calculated variation in the degree of spin polarization with lattice constant. The expected ferrimagnetic behavior has been observed in the arc-melted V2CoAl sample, with a Curie temperature of about 80 K. However, the saturation magnetization is significantly smaller than the theoretical prediction of ∼2 μB/f.u., most likely due to the observed B2-type atomic disorder. The samples exhibit metallic electron transport across the measurement range of 2 K to 300 K.more » « less
An official website of the United States government
