Abstract This paper describes the downscaling of an ensemble of 12 general circulation models (GCMs) using the Weather Research and Forecasting (WRF) Model at 12-km grid spacing over the period 1970–2099, examining the mesoscale impacts of global warming as well as the uncertainties in its mesoscale expression. The RCP8.5 emissions scenario was used to drive both global and regional climate models. The regional climate modeling system reduced bias and improved realism for a historical period, in contrast to substantial errors for the GCM simulations driven by lack of resolution. The regional climate ensemble indicated several mesoscale responses to global warming that were not apparent in the global model simulations, such as enhanced continental interior warming during both winter and summer as well as increasing winter precipitation trends over the windward slopes of regional terrain, with declining trends to the lee of major barriers. During summer there is general drying, except to the east of the Cascades. The 1 April snowpack declines are large over the lower-to-middle slopes of regional terrain, with small snowpack increases over the lower elevations of the interior. Snow-albedo feedbacks are very different between GCM and RCM projections, with the GCMs producing large, unphysical areas of snowpack loss and enhanced warming. Daily average winds change little under global warming, but maximum easterly winds decline modestly, driven by a preferential sea level pressure decline over the continental interior. Although temperatures warm continuously over the domain after approximately 2010, with slight acceleration over time, occurrences of temperature extremes increase rapidly during the second half of the twenty-first century. Significance Statement This paper provides a unique high-resolution view of projected climate change over the Pacific Northwest and does so using an ensemble of regional climate models, affording a look at the uncertainties in local impacts of global warming. The paper examines regional meteorological processes influenced by global warming and provides guidance for adaptation and preparation.
more »
« less
A Comparison between Analog Ensemble and Convolutional Neural Network Empirical-Statistical Downscaling Techniques for Reconstructing High-Resolution Near-Surface Wind
Empirical-statistical downscaling (ESD) can be a computationally advantageous alternative to dynamical downscaling in representing a high-resolution regional climate. Two distinct strategies of ESD are employed here to reconstruct near-surface winds in a region of rugged terrain. ESD is used to reconstruct the innermost grid of a multiply nested mesoscale model framework for regional climate downscaling. An analog ensemble (AnEn) and a convolutional neural network (CNN) are compared in their ability to represent near-surface winds in the innermost grid in lieu of dynamical downscaling. Downscaling for a 30 year climatology of 10 m April winds is performed for southern MO, USA. Five years of training suffices for producing low mean absolute error and bias for both ESD techniques. However, root-mean-squared error is not significantly reduced by either scheme. In the case of the AnEn, this is due to a minority of cases not producing a satisfactory representation of high-resolution wind, accentuating the root-mean-squared error in spite of a small mean absolute error. Homogeneous comparison shows that the AnEn produces smaller errors than the CNN. Though further tuning may improve results, the ESD techniques considered here show that they can produce a reliable, computationally inexpensive method for reconstructing high-resolution 10 m winds over complex terrain.
more »
« less
- Award ID(s):
- 1940618
- PAR ID:
- 10403479
- Date Published:
- Journal Name:
- Energies
- Volume:
- 15
- Issue:
- 5
- ISSN:
- 1996-1073
- Page Range / eLocation ID:
- 1718
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract An intelligent sensing framework using Machine Learning (ML) and Deep Learning (DL) architectures to precisely quantify dielectrophoretic force invoked on microparticles in a textile electrode-based DEP sensing device is reported. The prediction accuracy and generalization ability of the framework was validated using experimental results. Images of pearl chain alignment at varying input voltages were used to build deep regression models using modified ML and CNN architectures that can correlate pearl chain alignment patterns of Saccharomyces cerevisiae(yeast) cells and polystyrene microbeads to DEP force. Various ML models such as K-Nearest Neighbor, Support Vector Machine, Random Forest, Neural Networks, and Linear Regression along with DL models such as Convolutional Neural Network (CNN) architectures of AlexNet, ResNet-50, MobileNetV2, and GoogLeNet have been analyzed in order to build an effective regression framework to estimate the force induced on yeast cells and microbeads. The efficiencies of the models were evaluated using Mean Absolute Error, Mean Absolute Relative, Mean Squared Error, R-squared, and Root Mean Square Error (RMSE) as evaluation metrics. ResNet-50 with RMSPROP gave the best performance, with a validation RMSE of 0.0918 on yeast cells while AlexNet with ADAM optimizer gave the best performance, with a validation RMSE of 0.1745 on microbeads. This provides a baseline for further studies in the application of deep learning in DEP aided Lab-on-Chip devices.more » « less
-
Abstract Cities need climate information to develop resilient infrastructure and for adaptation decisions. The information desired is at the order of magnitudes finer scales relative to what is typically available from climate analysis and future projections. Urban downscaling refers to developing such climate information at the city (order of 1 – 10 km) and neighborhood (order of 0.1 – 1 km) resolutions from coarser climate products. Developing these higher resolution (finer grid spacing) data needed for assessments typically covering multiyear climatology of past data and future projections is complex and computationally expensive for traditional physics-based dynamical models. In this study, we develop and adopt a novel approach for urban downscaling by generating a general-purpose operator using deep learning. This ‘DownScaleBench’ tool can aid the process of downscaling to any location. The DownScaleBench has been generalized for both in situ (ground- based) and satellite or reanalysis gridded data. The algorithm employs an iterative super-resolution convolutional neural network (Iterative SRCNN) over the city. We apply this for the development of a high-resolution gridded precipitation product (300 m) from a relatively coarse (10 km) satellite-based product (JAXA GsMAP). The high-resolution gridded precipitation datasets is compared against insitu observations for past heavy rain events over Austin, Texas, and shows marked improvement relative to the coarser datasets relative to cubic interpolation as a baseline. The creation of this Downscaling Bench has implications for generating high-resolution gridded urban meteorological datasets and aiding the planning process for climate-ready cities.more » « less
-
This paper introduces a new digital integration that combines edge diffractometry with convolutional neural networks (CNN) for via metrology and inspection. The beam propagation method (BMP) was used to simulate the interferogram generated by edge diffractometry to characterize via edge roughness (VER). A comprehensive database was established to link different fringe patterns to VER for CNN training. The well-trained CNN-based methodology provided a fast and accurate assessment of VER, with a root mean squared error (RMSE) of 0.073 and an average mean absolute deviation ratio (MADR) of 2.274%. In addition, the proposed digital approach was compared to the multilayer perceptron machine (MLP) in terms of computational efficiency and predictive accuracy. The proposed digital integration greatly improved the accuracy and speed of VER measurement, characterization, and quantification, potentially enhancing device yield and reliability. The successful application of this digital approach could open up possibilities for various types of via or pattern metrology.more » « less
-
Abstract We propose a statistical downscaling method to produce fine-resolution climate projections. A multivariate spatial statistical model is developed to jointly analyse high-resolution remote sensing data and coarse-resolution climate model outputs. With a basis function representation, the resulting model can achieve efficient computation and describe potentially nonstationary spatial dependence. We implement our method to produce downscaled sea surface temperature projections over the Great Barrier Reef region from CMIP6 Earth system models. Compared with the state of the art, our method reduces the mean squared predictive error substantially and produces a predictive distribution enabling holistic uncertainty quantification analyses.more » « less
An official website of the United States government

