skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Water balance model (WBM) v.1.0.0: a scalable gridded global hydrologic model with water-tracking functionality
Abstract. This paper describes the University of New Hampshire Water Balance Model, WBM, a process-based gridded global hydrologic model that simulates the land surface components of the global water cycle and includes water extraction for use in agriculture and domestic sectors. The WBMwas first published in 1989; here, we describe the first fully open-sourceWBM version (v.1.0.0). Earlier descriptions of WBM methods provide the foundation for the most recent model version that is detailed here. We present an overview of themodel functionality, utility, and evaluation of simulated global riverdischarge and irrigation water use. This new version adds a novel suite ofwater source tracking modules that enable the analysis of flow-path histories on water supply. A key feature of WBM v.1.0.0 is the ability to identify the partitioning of sources for each stock or flux within the model. Three different categories of tracking are available: (1) primary inputs of water to the surface of the terrestrial hydrologic cycle (liquid precipitation, snowmelt, glacier melt, and unsustainable groundwater); (2) water that has been extracted for human use and returned to the terrestrial hydrologic system; and (3) runoff originating from user-defined spatial land units. Such component tracking provides a more fully transparent model in that users can identify the underlying mechanisms generating the simulated behavior. We find that WBM v.1.0.0 simulates global river discharge and irrigation water withdrawals well, even with default parameter settings, and for the first time, we are able to show how the simulation arrives at these fluxes by using the novel tracking functions.  more » « less
Award ID(s):
1926591 1926423
PAR ID:
10403503
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
15
Issue:
19
ISSN:
1991-9603
Page Range / eLocation ID:
7287 to 7323
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both large‐scale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between large‐scale ocean and atmospheric circulation and smaller‐scale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotope‐enabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850–2005 period, iCESM1 correctly captures the late‐twentieth‐century structure of δ18O and δD over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater δ18O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotope‐enabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.

     
    more » « less
  2. Abstract

    Agricultural expansion and management have greatly increased global food production and altered Earth's climate by changing physical and biogeochemical properties of terrestrial ecosystems. Few Earth system models represent agricultural management practices due to the complexity of the interactions between human decisions and biological processes on global scales. We describe the new capabilities of representing crop distributions and management in the Community Land Model (CLM) Version 5, which includes time‐varying spatial distributions of major crop types and their management through fertilization and irrigation, and temperature‐based phenological triggers. Including active crop management increases peak growing season gross primary productivity (GPP), increases the amplitude of Northern Hemisphere net ecosystem exchange, and changes seasonal and annual patterns of latent and sensible heat fluxes. The CLM5 crop model simulates the global observed historical trend of crop yields with relative fidelity from 1850 to 1990. Cropland expansion was important for increasing crop production, especially during the first century of the simulations, while fertilization and irrigation were important for increasing yields from 1950 onward. From 1990 to present day, observed crop production continued to increase while CLM5 production levels off, likely because intensification practices are not represented in the model. Specifically, CLM does not currently include increasing planting density, crop breeding and genetic modification, representations of tillage, or other management practices that may also affect crop‐climate and crop‐carbon cycle interactions and alter trends in yields. These results highlight the importance of including crop management in Earth system models, particularly as global data sets for parameterization and evaluation become more readily available.

     
    more » « less
  3. Irrigation can affect climate and weather patterns from regional to global scales through the alteration of surface water and energy balances. Here, we couple a land-surface model (LSM) that includes various human land-water management activities including irrigation with an atmospheric general circulation model (AGCM) to examine the impacts of irrigation-induced land disturbance on the subseasonal predictability of near-surface variables. Results indicate that the simulated global irrigation and groundwater withdrawals (circa 2000) are ~3600 and ~370 km3/year, respectively, which are in good agreement with previous estimates from country statistics and offline–LSMs. Subseasonal predictions for boreal summers during the 1986–1995 period suggest that the spread among ensemble simulations of air temperature can be substantially reduced by using realistic land initializations considering irrigation-induced changes in soil moisture. Additionally, it is found that the subseasonal forecast skill for near-surface temperature and sea level pressure significantly improves when human-induced land disturbance is accounted for in the AGCM. These results underscore the need to incorporate irrigation into weather forecast models, such as the global forecast system. 
    more » « less
  4. Abstract

    Irrigation representation in land surface models has been advanced over the past decade, but the soil moisture (SM) data from SMAP satellite have not yet been utilized in large‐scale irrigation modeling. Here we investigate the potential of improving irrigation representation in the Community Land Model version‐4.5 (CLM4.5) by assimilating SMAP data. Simulations are conducted over the heavily irrigated central U.S. region. We find that constraining the target SM in CLM4.5 using SMAP data assimilation with 1‐D Kalman filter reduces the root‐mean‐square error of simulated irrigation water requirement by 50% on average (for Nebraska, Kansas, and Texas) and significantly improves irrigation simulations by reducing the bias in irrigation water requirement by up to 60%. An a priori bias correction of SMAP data further improves these results in some regions but incrementally. Data assimilation also enhances SM simulations in CLM4.5. These results could provide a basis for improved modeling of irrigation and land‐atmosphere interactions.

     
    more » « less
  5. Abstract

    Unprecedented climate change and anthropogenic activities have induced increasing ecohydrological problems, motivating the development of large‐scale hydrologic modeling for solutions. Water age/quality is as important as water quantity for understanding the terrestrial water cycle. However, scientific progress in tracking water parcels at large‐scale with high spatiotemporal resolutions is far behind that in simulating water balance/quantity owing to the lack of powerful modeling tools. EcoSLIM is a particle tracking model working with ParFlow‐CLM that couples integrated surface‐subsurface hydrology with land surface processes. Here, we demonstrate a parallel framework on distributed, multi‐Graphics Processing Unit platforms with Compute Unified Device Architecture‐Aware Message Passing Interface for accelerating EcoSLIM to continental‐scale. In tests from catchment‐, to regional‐, and then to continental‐scale using 25‐million to 1.6‐billion particles, EcoSLIM shows significant speedup and excellent parallel performance. The parallel framework is portable to atmospheric and oceanic particle tracking models, where the parallelization is inadequate, and a standard parallel framework is also absent. The parallelized EcoSLIM is a promising tool to accelerate our understanding of the terrestrial water cycle and the upscaling of subsurface hydrology to Earth System Models.

     
    more » « less