Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hyporheic zones regulate biogeochemical processes in streams and rivers, but high spatiotemporal heterogeneity makes it difficult to predict how these processes scale from individual reaches to river basins. Recent work applying allometric scaling (i.e., power‐law relationships between size and function) to river networks provides a new paradigm for understanding cumulative hyporheic biogeochemical processes. We used previously published model predictions of reach‐scale hyporheic aerobic respiration to explore patterns in allometric scaling across two climatically divergent basins with differing characteristics in the Pacific Northwest, United States. In the model, hydrologic exchange fluxes (HEFs) regulate hyporheic respiration, so we examined how HEFs might influence allometric scaling of respiration. We found consistent scaling behaviors where HEFs were either very low or very high, but differences between basins when HEFs were moderate. Our findings provide initial model‐generated hypotheses for factors influencing allometric scaling of hyporheic respiration. These hypotheses can be used to optimize new data generation efforts aimed at developing predictive understanding of allometries that can, in turn, be used to scale biogeochemical dynamics across watersheds.more » « less
-
Abstract River networks play a crucial role in the global carbon cycle, as relevant sources of carbon dioxide (CO2) to the atmosphere. Advancements in high‐frequency monitoring in aquatic environments have enabled measurement of dissolved CO2concentration at temporal resolutions essential for studying carbon variability and evasion from these dynamic ecosystems. Here, we describe the adaptation, deployment, and validation of an open‐source and relatively low‐cost in situpCO2sensor system for lotic ecosystems, the lotic‐SIPCO2. We tested the lotic‐SIPCO2 in 10 streams that spanned a range of land cover and basin size. Key system adaptations for lotic environments included prevention of biofouling, configuration for variable stage height, and reduction of headspace equilibration time. We then examined which input parameters contribute the most to uncertainty in estimating CO2emission rates and found scaling factors related to the gas exchange velocity were the most influential when CO2concentration was significantly above saturation. Near saturation, sensor measurement ofpCO2contributed most to uncertainty in estimating CO2emissions. We also found high‐frequency measurements ofpCO2were not necessary to accurately estimate median emission rates given the CO2regimes of our streams, but daily to weekly sampling was sufficient. High‐frequency measurements ofpCO2remain valuable for exploring in‐stream metabolic variability, source partitioning, and storm event dynamics. Our adaptations to the SIPCO2 offer a relatively affordable and robust means of monitoring dissolved CO2in lotic ecosystems. Our findings demonstrate priorities and related considerations in the design of monitoring projects of dissolved CO2and CO2evasion dynamics more broadly.more » « less
-
Abstract Headwater stream networks contribute substantially to the global carbon dioxide terrestrial flux because of high turbulence and coupling with terrestrial environments. Heterogeneity within headwater stream networks, both spatially and temporally, makes measuring and upscaling these emissions challenging because measurements of carbon dioxide in streams are often limited to a few monitoring points. We modified a stream network model to reflect real measurements made under base flow and high flow conditions at Martha Creek in Stabler, WA in the US Pacific Northwest. We found that under high flow conditions, the stream network had much greater total carbon emissions than during low flow conditions (1.22 Mg C day−1vs. 0.034 Mg C day−1). We attribute this increase to a larger overall stream network area (0.04 vs. 0.01 km2) and discharge (1.9 m3 s−1vs. 0.005 m3 s−1) in November versus August. Our results demonstrate the need to understand the nonperennial stream reaches when calculating carbon emissions. We compared the stream network emissions with the terrestrial net ecosystem exchange (NEE) estimated by local eddy covariance measurements per watershed area (−5.5 Mg C day−1in August and −2.2 Mg C day−1in November). Daily stream emissions in November accounted for a much larger percentage of NEE than in August (54% vs. 0.62%). We concluded that the stream network can emit a large percentage of the forest NEE in the winter months, and annual estimates of stream network emissions must consider the flow regime throughout the year.more » « less
-
Abstract River networks regulate carbon and nutrient exchange between continents, atmosphere, and oceans. However, contributions of riverine processing are poorly constrained at continental scales. Scaling relationships of cumulative biogeochemical function with watershed size (allometric scaling) provide an approach for quantifying the contributions of fluvial networks in the Earth system. Here we show that allometric scaling of cumulative riverine function with watershed area ranges from linear to superlinear, with scaling exponents constrained by network shape, hydrological conditions, and biogeochemical process rates. Allometric scaling is superlinear for processes that are largely independent of substrate concentration (e.g., gross primary production) due to superlinear scaling of river network surface area with watershed area. Allometric scaling for typically substrate-limited processes (e.g., denitrification) is linear in river networks with high biogeochemical activity or low river discharge but becomes increasingly superlinear under lower biogeochemical activity or high discharge, conditions that are widely prevalent in river networks. The frequent occurrence of superlinear scaling indicates that biogeochemical activity in large rivers contributes disproportionately to the function of river networks in the Earth system.more » « less
-
Abstract. This paper describes the University of New Hampshire Water Balance Model, WBM, a process-based gridded global hydrologic model that simulates the land surface components of the global water cycle and includes water extraction for use in agriculture and domestic sectors. The WBMwas first published in 1989; here, we describe the first fully open-sourceWBM version (v.1.0.0). Earlier descriptions of WBM methods provide the foundation for the most recent model version that is detailed here. We present an overview of themodel functionality, utility, and evaluation of simulated global riverdischarge and irrigation water use. This new version adds a novel suite ofwater source tracking modules that enable the analysis of flow-path histories on water supply. A key feature of WBM v.1.0.0 is the ability to identify the partitioning of sources for each stock or flux within the model. Three different categories of tracking are available: (1) primary inputs of water to the surface of the terrestrial hydrologic cycle (liquid precipitation, snowmelt, glacier melt, and unsustainable groundwater); (2) water that has been extracted for human use and returned to the terrestrial hydrologic system; and (3) runoff originating from user-defined spatial land units. Such component tracking provides a more fully transparent model in that users can identify the underlying mechanisms generating the simulated behavior. We find that WBM v.1.0.0 simulates global river discharge and irrigation water withdrawals well, even with default parameter settings, and for the first time, we are able to show how the simulation arrives at these fluxes by using the novel tracking functions.more » « less
An official website of the United States government
