skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mathematical Modelling of Reactive Inks for Additive Manufacturing of Charged Membranes
Patterned charged membranes with engendered useful characteristics can offer selective transport of electrolytes. Chemical patterning across the membrane surface via a physical inkjet deposition process requires precise control of the reactive-ink formulation, which enables the introduction of charged functionality to the membrane. This study develops a new dynamic mathematical model for the primary step of the batch reactive-ink formulation considering an ink mixture of copper sulphate and ascorbic acid. Nonlinear least squares parameter estimation is performed to infer three kinetic model parameters by analysing data from nine dynamic experiments simultaneously. Global sensitivity and Fisher information matrix (FIM) analyses reveal only one kinetic parameter is identifiable from time-series pH measurements. The fitted model can capture the overall nonlinear dynamics of the batch reaction and works best for initial Cu2 + concentrations between 30 and 50 mM. Time-series Cu2 + or Cu+ concentration measurements are recommended in future experiments to elucidate the kinetics of reactive-ink formulation.  more » « less
Award ID(s):
1941596
PAR ID:
10403699
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Yamashita, Y.; Kano, M.
Date Published:
Journal Name:
Computer aided chemical engineering
Volume:
49
ISSN:
2543-1331
Page Range / eLocation ID:
1063-1068
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Resazurin (Raz) and its reaction product resorufin (Rru) have increasingly been used as reactive tracers to quantify metabolic activity and hyporheic exchange in streams. Previous work has indicated that these compounds undergo sorption in stream sediments. We present laboratory experiments on Raz and Rru transport, sorption, and transformation, consisting of 4 column and 72 batch tests using 2 sediments with different physicochemical properties under neutral (pH = 7) and alkaline (pH = 9) conditions. The study aimed at identifying the key processes of reactive transport of Raz and Rru in streambed sediments and the experimental setup best suited for their determination. Data from column experiments were simulated by a travel-time-based model accounting for physical transport, equilibrium and kinetic sorption, and three first-order reactions. We derived the travel-time distributions directly from the breakthrough curve (BTC) of the conservative tracer, fluorescein, rather than from fitting an advective-dispersive transport model, and inferred from those distributions the transfer functions of Raz and Rru, which provided conclusive approximations of the measured BTCs. The most likely reactive transport parameters and their uncertainty were determined by a Markov chain–Monte Carlo approach. Sorption isotherms of both compounds were obtained from batch experiments. We found that kinetic sorption dominates sorption of both Raz and Rru, with characteristic timescales of sorption in the order of 12 to 298 min. Linear sorption models for both Raz and Rru appeared adequate for concentrations that are typically applied in field tracer tests. The proposed two-site sorption model helps to interpret transient tracer tests using the Raz–Rru system. 
    more » « less
  2. Yamashita, Y.; Kano, M. (Ed.)
    Membrane characterization provides essential information for the scale-up, design, and optimization of new separation systems. We recently proposed the diafiltration apparatus for high-throughput analysis (DATA), which enables a 5-times reduction in the time, energy, and the number of experiments necessary to characterize membrane transport properties. This paper applies formal model-based design of experiments (MBDoE) techniques to further analyse and optimize DATA. For example, the eigenvalues and eigenvectors of the Fisher Information Matrix (FIM) show dynamic diafiltration experiments improve parameter identifiability by 3 orders of magnitude compared to traditional filtration experiments. Moreover, continuous retentate conductivity measurements in DATA improve A-, D-, E-, and ME-optimal MBDoE criteria by between 6 % and 32 %. Using these criteria, we identify pressure and initial concentrations conditions that maximize parameter precision and remove correlations. 
    more » « less
  3. null (Ed.)
    Parameter estimation for nonlinear dynamic system models, represented by ordinary differential equations (ODEs), using noisy and sparse data, is a vital task in many fields. We propose a fast and accurate method, manifold-constrained Gaussian process inference (MAGI), for this task. MAGI uses a Gaussian process model over time series data, explicitly conditioned on the manifold constraint that derivatives of the Gaussian process must satisfy the ODE system. By doing so, we completely bypass the need for numerical integration and achieve substantial savings in computational time. MAGI is also suitable for inference with unobserved system components, which often occur in real experiments. MAGI is distinct from existing approaches as we provide a principled statistical construction under a Bayesian framework, which incorporates the ODE system through the manifold constraint. We demonstrate the accuracy and speed of MAGI using realistic examples based on physical experiments. 
    more » « less
  4. Microbially Induced Calcite Precipitation (MICP) is a bio-mediated cementation process that uses microbial enzymatic activity to catalyze the precipitation of CaCO3 minerals on soil particle surfaces and contacts. Extensive research has focused on understanding various aspects of MICP-treated soils including soil behavioral enhancements and process reaction chemistry, however, almost no research has explored the permanence of bio-cemented geomaterials. As the technology matures, an improved understanding of the longevity of bio-cementation improved soils will be critical towards identifying favorable field applications, quantifying environmental impacts, and understanding their long-term performance. In this study, a series of batch experiments were performed to investigate the dissolution kinetics of CaCO3-based bio- cemented sands with the specific aim of incorporating these behaviors into geochemical models. All batch experiments involved previously bio-cemented poorly graded sands that were exposed to different dissolution treatments intended to explore the magnitude and rate of CaCO3 dissolution as a function of acid type, concentration, initial pH, and other factors. During experiments, changes in solution pH and calcium concentrations indicative of CaCO3 dissolution were monitored. After experiments, aqueous measurements were compared to those simulated using two different dissolution kinetic frameworks. While not exhaustive, the results of these experiments suggest that the dissolution behavior of bio-cementation can be well-approximated using existing chemically controlled kinetic models, particularly when surrounding solutions are more strongly buffered. 
    more » « less
  5. Inference is a term that encompasses many techniques including statistical data assimilation (SDA). Unlike machine learning, which is designed to harness predictive power from extremely large data sets, SDA is designed for sparsely-sampled systems. This is the realm of study of nonlinear dynamical systems in nature. Formulated as an optimization procedure, SDA can be considered a path-integral approach to state and parameter estimation. Within this formulation, we can use the physical principle of least action to identify optimal solutions: solutions that are consistent with both measurements and a dynamical model assumed to give rise to those measurements. I review examples from neurobiology and an epidemiological model tailored to the coronavirus SARS-CoV-2, to demonstrate the versatility of SDA across the sciences, and how these distinct applications possess commonalities that can inform one another. 
    more » « less