skip to main content


Title: Measures of success: characterizing teaching and teaching change with segmented and holistic observation data
Abstract Background

Numerous studies show that active and engaging classrooms help students learn and persist in college, but adoption of new teaching practices has been slow. Professional development programs encourage instructors to implement new teaching methods and change the status quo in STEM undergraduate teaching, and structured observations of classrooms can be used in multiple ways to describe and assess this instruction. We addressed the challenge of measuring instructional change with observational protocols, data that often do not lend themselves easily to statistical comparisons. Challenges using observational data in comparative research designs include lack of descriptive utility for holistic measures and problems related to construct representation, non-normal distributions and Type-I error inflation for segmented measures.

Results

We grouped 790 mathematics classes from 74 instructors using Latent Profile Analysis (a statistical clustering technique) and found four reliable categories of classes. Based on this grouping we proposed a simple proportional measure we called Proportion Non-Didactic Lecture (PND). The measure aggregated the proportions of interactive to lecture classes for each instructor. We tested the PND and a measure derived from the Reformed Teaching Observation Protocol (RTOP) with data from a professional development study. The PND worked in simple hypothesis tests but lacked some statistical power due to possible ceiling effects. However, the PND provided effective descriptions of changes in instructional approaches from pre to post. In tandem with examining the proportional measure, we also examined the RTOP-Sum, an existing outcome measure used in comparison studies. The measure is based on the aggregated items in a holistic observational protocol. As an aggregate measure we found it to be highly reliable, correlated highly with the PND, and had more statistical power than the PND. However, the RTOP measure did not provide the thick descriptions of teaching afforded by the PND.

Conclusions

Findings suggest that useful dependent measures can be derived from both segmented and holistic observational measures. Both have strengths and weaknesses: measures from segmented data are best at describing changes in teaching, while measures derived from the RTOP have more statistical power. Determining the validity of these measures is important for future use of observational data in comparative studies.

 
more » « less
Award ID(s):
1821704 1525077 1245436
NSF-PAR ID:
10403873
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
International Journal of STEM Education
Volume:
10
Issue:
1
ISSN:
2196-7822
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cook, S. ; Katz, B. ; Moore-Russo, D. (Ed.)
    Teaching observations can be used in multiple ways to describe and assess instruction. We addressed the challenge of measuring instructional change with observational protocols, data that often do not lend themselves easily to statistical comparisons. We first grouped 790 mathematics classes using Latent Profile Analysis and found four reliable categories of classes. Based on the grouping we proposed a proportional measure called Proportion Non-Didactic Lecture (PND). The measure is the proportion of interactive to lecture classes for each instructor. The PND worked in simple hypothesis tests but lacked some statistical power due to possible scaler ceiling effects. The measure correlated highly with a dependent measure derived from the Reformed Teaching Observation Protocol (RTOP), a holistic observational measure. The PND also provided effective descriptions and visualizations of instructional approaches and how these changed from pre to post. 
    more » « less
  2. Abstract Background

    There is overwhelming evidence that evidence-based teaching improves student performance; however, traditional lecture predominates in STEM courses. To provide support as faculty transform their lecture-based classrooms with evidence-based teaching practices, we created a faculty development program based on best practices, Consortium for the Advancement of Undergraduate STEM Education (CAUSE). CAUSE paired exploration of evidence-based teaching with support for classroom implementation over two years. Each year for three years, CAUSE recruited cohorts of faculty from seven STEM departments. Faculty met biweekly to discuss evidence-based teaching and receive feedback on their implementation. We used the PORTAAL observation tool to document evidence-based teaching practices (PORTAAL practices) across four randomly chosen class sessions each term. We investigated if the number of PORTAAL practices used or the amount of practices increased during the program.

    Results

    We identified identical or equivalent course offerings taught at least twice by the same faculty member while in CAUSE (n = 42 course pairs). We used a one-way repeated measures within-subjects multivariate analysis to examine the changes in average use of 14 PORTAAL practices between the first and second timepoint. We created heat maps to visualize the difference in number of practices used and changes in level of implementation of each PORTAAL practice. Post-hoc within-subjects effects indicated that three PORTAAL practices were significantly higher and two were lower at timepoint two. Use of prompting prior knowledge and calling on volunteers to give answers decreased, while instructors doubled use of prompting students to explain their logic, and increased use of random call by almost 40% when seeking answers from students. Heat maps indicated increases came both from faculty’s adoption of these practices and increased use, depending on the practice. Overall, faculty used more practices more frequently, which contributed to a 17% increase in time that students were actively engaged in class.

    Conclusions

    Results suggest that participation in a long-term faculty development program can support increased use of evidence-based teaching practices which have been shown to improve student exam performance. Our findings can help prioritize the efforts of future faculty development programs.

     
    more » « less
  3. Abstract Background

    An instructor’s conceptions of teaching and learning contribute to the establishment of learning environments that may benefit or hinder student learning. Previous studies have defined the continuum of teaching and learning conceptions, ranging from limited to complete, as well as the instructional practices that they help to inform (instructor-centered to student-centered), and the corresponding learning environments that these conceptions and practices establish, ranging from traditional to student-centered. Using the case of one STEM department at a research-intensive, minority serving institution, we explored faculty’s conceptions of teaching and learning and their resulting instructional practices, as well as uncovered their perspectives on the intradepartmental faculty interactions related to teaching. The study participants were drawn from both teaching-focused (called Professors of Teaching, PoTs) and traditional research (whom we call Research Professors, RPs) tenure-track faculty lines to identify whether differences existed amongst these two populations. We used interviews to explore faculty conceptions and analyzed syllabi to unveil how these conceptions shape instructional environments.

    Results

    Overall, PoTs exhibited complete conceptions of teaching and learning that emphasized student ownership of learning, whereas RPs possessed intermediate conceptions that focused more on transmitting knowledge and helping students prepare for subsequent courses. While both PoTs and RPs self-reported the use of active learning pedagogies, RPs were more likely to also highlight the importance of traditional lecture. The syllabi analysis revealed that PoTs enacted more student-centered practices in their classrooms compared to RPs. PoTs appeared to be more intentionally available to support students outside of class and encouraged student collaboration, while RPs focused more on the timeliness of assessments and enforcing more instructor-centered approaches in their courses. Finally, the data indicated that RPs recognized PoTs as individuals who were influential on their own teaching conceptions and practices.

    Conclusions

    Our findings suggest that departments should consider leveraging instructional experts who also possess a disciplinary background (PoTs) to improve their educational programs, both due to their student-centered impacts on the classroom environment and positive influence on their colleagues (RPs). This work also highlights the need for higher education institutions to offer appropriate professional development resources to enable faculty to reflect on their teaching and learning conceptions, aid in their pedagogical evolution, and guide the implementation of these conceptions into practice.

     
    more » « less
  4. Abstract  
    more » « less
  5. Abstract Background

    Active learning used in science, technology, engineering, and mathematics (STEM) courses has been shown to improve student outcomes. Nevertheless, traditional lecture-orientated approaches endure in these courses. The implementation of teaching practices is a result of many interrelated factors including disciplinary norms, classroom context, and beliefs about learning. Although factors influencing uptake of active learning are known, no study to date has had the statistical power to empirically test the relative association of these factors with active learning when considered collectively. Prior studies have been limited to a single or small number of evaluated factors; in addition, such studies did not capture the nested nature of institutional contexts. We present the results of a multi-institution, large-scale (N = 2382 instructors;N = 1405 departments;N = 749 institutions) survey-based study in the United States to evaluate 17 malleable factors (i.e., influenceable and changeable) that are associated with the amount of time an instructor spends lecturing, a proxy for implementation of active learning strategies, in introductory postsecondary chemistry, mathematics, and physics courses.

    Results

    Regression analyses, using multilevel modeling to account for the nested nature of the data, indicate several evaluated contextual factors, personal factors, and teacher thinking factors were significantly associated with percent of class time lecturing when controlling for other factors used in this study. Quantitative results corroborate prior research in indicating that large class sizes are associated with increased percent time lecturing. Other contextual factors (e.g., classroom setup for small group work) and personal contexts (e.g., participation in scholarship of teaching and learning activities) are associated with a decrease in percent time lecturing.

    Conclusions

    Given the malleable nature of the factors, we offer tangible implications for instructors and administrators to influence the adoption of more active learning strategies in introductory STEM courses.

     
    more » « less