The Student Pathways in Engineering and Computing for Transfers (SPECTRA) program is a newly funded S-STEM program in South Carolina, expected to run through 2026. The program is envisioned to provide a streamlined academic pathway for transfer students from 2-year programs within South Carolina into Clemson University, and provide programming to aid their academic success and social integration. To achieve this, SPECTRA will create cohorts of students at two community/technical colleges (Spartanburg Community College and Trident Technical College) and then support that cohort as they transitioned together into Clemson University. This cohort would then be mentored in how to navigate Clemson University’s academic environment, utilizing available programming such as academic tutoring, field trips to see local engineering companies, etc. A unique component of the SPECTRA program is the requirement that scholarship recipients at Clemson University enroll in two semesters of research, in addition to their participation in social and academic programing. Through this Work in Progress paper, the experience in designing and facilitating these research courses while matriculating through their graduate programs is documented by the authors. Specifically, the design constraints of the research courses, the topics developed for the 2021-2022 cohorts and the envisioned assessment are discussed. 
                        more » 
                        « less   
                    
                            
                            Using Design-based Research Methods to Scale in an Expanding Intervention
                        
                    
    
            In this work-in-progress paper, we present design-based methodological work intended to support implementation of a large-scale, ongoing NSF Scholarships in STEM (S-STEM) project. We have created pilot tools and procedures for data collection and analysis that will supply consistent research throughlines during the project lifespan while also providing iterations of formative feedback about participants’ needs and their experiences in the project. While these tools and procedures have allowed us to analyze pilot data, in each year of the project, participant numbers will continue to grow, placing additional demands on our research team and our chosen methods. Will the designs we have created help us to scale effectively while remaining fidelitous to our project goals? The purpose of the S-STEM project is to connect student pathways at state technical colleges to Engineering and Computer Sciences programs at a Research I university in the southeastern United States. Toward this goal, we are implementing communities of practice and cognitive apprenticeship strategies to support student cohorts and create programming aspects to enhance transfer students’ enculturation to the university, completion of STEM-related degrees, and placement in the industrial workforce. Cohorts begin at the technical colleges, guided by a doctoral student mentor who engages program participants in applied research and shepherds them throughout their transition to the university. Now in the second year of the project, the pilot cohort is studying at the university while new cohorts are engaged at the collaborating technical colleges. Each year, the number of students participating in the five-year implementation will accumulate to a proposed total of over 300 students. Our research team will need to scale our efforts toward project fidelity. Our intent with this work-in-progress paper is to share our current status and invite interested colleagues to provide feedback about our pilot analysis work and our plans for future data. We will introduce the design-based methods that inform both research and development in our project. In particular, we will focus on the applicability of these methods for implementation work and how they can be effectively scaled to large interventions. We will describe observation, interview and focus group, and survey methods, along with how these methods complement academic sources and other student-related data. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1834081
- PAR ID:
- 10403913
- Date Published:
- Journal Name:
- ASEE Annual Conference proceedings
- ISSN:
- 1524-4644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The project focuses on increasing “effective STEM education and broadening participation” in underrepresented minority (URM) STEM students at the University of Texas Rio Grande Valley (UTRGV) to successfully face academic and professional challenges, recently exacerbated by the COVID-19 pandemic. The Freshman Year Innovator Experience proposes the development of self-transformation skills in freshman mechanical engineering students to successfully face academic and professional challenges exacerbated by the COVID-19 pandemic while working on two parallel projects of technical design innovation and academic career pathways. The authors will present the work in progress and preliminary results from a pilot implementation of the Freshman Year Innovator Experience. This project is funded by NSF award 2225247.more » « less
- 
            Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).more » « less
- 
            Recognizing current and future needs for a diverse skilled workforce in mechanical engineering and the rising cost of higher education that acts as a barrier for many talented students with interests in engineering, the NSF funded S-STEM project at a state university focuses resources and research on financial support coupled with curricular and co-curricular activities designed to facilitate student degree attainment, career development, and employability in STEM-related jobs. This program has provided enhanced educational opportunities to more than 90 economically disadvantaged and academically talented undergraduate students in the Mechanical Engineering Department in the past eight years. It is expected that approximately 45 academically talented and financially needy students, including students transferring from community colleges to four-year engineering programs will receive scholarship support in the next 5 years, with an average amount of $6,000 per year for up to four years to earn degrees in mechanical engineering at the University of Maryland Baltimore County (UMBC). Through scholarships and supplemental support services, this program promotes full-time enrollment and will elevate the scholastic achievement of the S-STEM scholars, with a special emphasis on females and/or underrepresented minorities. It will provide a holistic and novel educational experience combining science, engineering, technology and medicine to improve student retention and future career prospects. The project builds on an established partnership between the state university and community colleges to improve and investigate the transfer experience of community college students to four-year programs, student retention at the university, and job placement and pathways to graduate school and employment. A mixed methods quantitative and qualitative research approach will examine the implementation and outcomes of proactive recruitment; selected high impact practices, such as orientation, one-to-one faculty mentoring, peer mentoring, and community building; participation by students in research-focused activities, such as research seminars and undergraduate experiences; and participation by students in career and professional development activities. In this paper, preliminary data will be presented discussing the attitudes and perceptions of the s-stem scholars and comparing students in scholarly programs and non-programmed situations. This research was supported by an NSF S-STEM grant (DUE-1742170).more » « less
- 
            In January 2020 East Carolina University (ECU) in partnership with Lenoir Community College (LCC), Pitt Community College (PCC), and Wayne Community College (WCC) was awarded an S-STEM Track 3 Grant (Grant number: 1930497). The purpose of this grant was to support low-income students at each partner institution, to research best practices in recruiting and retaining low-income students at both universities and community colleges, and to research how such programs influence the transfer outcomes from two-year to four-year schools. This grant provides scholarship support for two cohorts of students, one starting their engineering studies in Fall 2020 and the other starting their engineering studies in Fall 2021. Each cohort was to be comprised of 40 students including 20 students at ECU and 20 students divided among the three partnering community colleges. In addition to supporting student scholarships, this grant supported the establishment of new student support mechanisms and enhancement of existing support systems on each campus. This project involved the creation of a faculty mentoring program, designing a summer bridge program, establishing a textbook lending library, and enhancing activities for students in a living-learning community, expansion of university tutoring initiatives to allow access for community college students, and promoting a new peer mentoring initiative. The program emphasizes career opportunities including promoting on-campus career fairs, promoting internship and co-op opportunities, and bringing in guest speakers from various industry partners. A goal of the program was to allow community college students to build relationships with university students and faculty so they can more easily assimilate into the student body at the university upon transfer. This paper presents the challenges presented to the project in the first year and the pivoting that occurred due the pandemic. Data is presented regarding recruitment of scholars in both cohorts and retention of scholars from year 1 to year 2.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    