skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Candidate Members of the VMP/EMP Disk System of the Galaxy from the SkyMapper and SAGES Surveys
Abstract Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys such as Sloan Digital Sky Survey/SEGUE and LAMOST. Here we report on an effort to identify likely members of the Galactic disk system among the very metal-poor (VMP; [Fe/H] ≤ −2) and extremely metal-poor (EMP; [Fe/H] ≤ −3) stars. Our analysis is based on an initial sample of ∼11.5 million stars with full space motions selected from the SkyMapper Southern Survey (SMSS) and Stellar Abundance and Galactic Evolution Survey (SAGES). After applying a number of quality cuts to obtain the best available metallicity and dynamical estimates, we analyze a total of ∼5.86 million stars in the combined SMSS/SAGES sample. We employ two techniques that, depending on the method, identify between 876 and 1476 VMP stars (6.9%−11.7% of all VMP stars) and between 40 and 59 EMP stars (12.4%−18.3% of all EMP stars) that appear to be members of the Galactic disk system on highly prograde orbits (vϕ> 150 km s−1). The total number of candidate VMP/EMP disklike stars is 1496, the majority of which have low orbital eccentricities, ecc ≤ 0.4; many have ecc ≤ 0.2. The large fractions of VMP/EMP stars associated with the Milky Way disk system strongly suggest the presence of an early-forming “primordial” disk.  more » « less
Award ID(s):
1927130
PAR ID:
10543440
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
arXiv
Date Published:
Journal Name:
The Astrophysical Journal Supplement Series
Volume:
273
Issue:
1
ISSN:
0067-0049
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present precise photometric estimates of stellar parameters, including effective temperature, metallicity, luminosity classification, distance, and stellar age, for nearly 26 million stars using the methodology developed in the first paper of this series, based on the stellar colors from the Stellar Abundances and Galactic Evolution Survey (SAGES) Data Release 1 and Gaia Early Data Release 3. The optimal design of stellar-parameter sensitiveuvfilters by SAGES has enabled us to determine photometric-metallicity estimates down to −3.5, similar to our previous results with the SkyMapper Southern Survey (SMSS), yielding a large sample of over five million metal-poor ([Fe/H] ≤ −1.0) stars and nearly one million very metal-poor ([Fe/H] ≤ −2.0) stars. The typical precision is around 0.1 dex for both dwarf and giant stars with [Fe/H] > −1.0, and 0.15–0.25/0.3–0.4 dex for dwarf/giant stars with [Fe/H] < −1.0. Using the precise parallax measurements and stellar colors from Gaia, effective temperature, luminosity classification, distance, and stellar age are further derived for our sample stars. This huge data set in the Northern sky from SAGES, together with similar data in the Southern sky from SMSS, will greatly advance our understanding of the Milky Way, in particular its formation and evolution. 
    more » « less
  2. Abstract We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] < –2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] < –3.0) candidates from the Sloan Digital Sky Survey and Large sky Area Multi-Object Fiber Spectroscopic Telescope survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find 10 EMP stars among our candidates, and we newly identify three carbon-enhanced metal-poor stars with [Ba/Fe] < 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = –1.02) with high K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (SNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = –0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10–26 M ⊙ , suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. 
    more » « less
  3. Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]>  − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity. 
    more » « less
  4. Abstract In this work, we study the phase-space and chemical properties of the Sagittarius (Sgr) stream, the tidal tails produced by the ongoing destruction of the Sgr dwarf spheroidal (dSph) galaxy, focusing on its very metal-poor (VMP; [Fe/H] < −2) content. We combine spectroscopic and astrometric information from SEGUE and Gaia EDR3, respectively, with data products from a new large-scale run of theStarHorsespectrophotometric code. Our selection criteria yield ∼1600 stream members, including >200 VMP stars. We find the leading arm (b> 0°) of the Sgr stream to be more metal-poor, by ∼0.2 dex, than the trailing one (b< 0°). With a subsample of turnoff and subgiant stars, we estimate this substructure’s stellar population to be ∼1 Gyr older than the thick disk’s. With the aid of anN-body model of the Sgr system, we verify that simulated particles stripped earlier (>2 Gyr ago) have present-day phase-space properties similar to lower metallicity stream stars. Conversely, those stripped more recently (<2 Gyr) are preferentially akin to metal-rich ([Fe/H] > −1) members of the stream. Such correlation between kinematics and chemistry can be explained by the existence of a dynamically hotter, less centrally concentrated, and more metal-poor population in Sgr dSph prior to its disruption, implying that this galaxy was able to develop a metallicity gradient before its accretion. Finally, we identified several carbon-enhanced metal-poor ([C/Fe] > +0.7 and [Fe/H] ≤ −1.5) stars in the Sgr stream, which might be in tension with current observations of its remaining core where such objects are not found. 
    more » « less
  5. Abstract We continue our series of papers on phase-space distributions of stars in the Milky Way based on photometrically derived metallicities and Gaia astrometry, with a focus on the halo−disk interface in the local volume. To exploit various photometric databases, we develop a method of empirically calibrating synthetic stellar spectra based on a comparison with observations of stellar sequences and individual stars in the Sloan Digital Sky Survey, the SkyMapper Sky Survey, and the Pan-STARRS1 surveys, overcoming band-specific corrections employed in our previous work. In addition, photometric zero-point corrections are derived to provide an internally consistent photometric system with a spatially uniform metallicity zero-point. Using our phase-space diagrams, we find a remarkably narrow sequence in the rotational velocity ( v ϕ ) versus metallicity ([Fe/H]) space for a sample of high proper-motion stars (>25 mas yr −1 ), which runs along Gaia Sausage/Enceladus (GSE) and the Splash substructures and is linked to the disk, spanning nearly 2 dex in [Fe/H]. Notably, a rapid increase of v ϕ from a nearly zero net rotation to ∼180 km s −1 in a narrow metallicity interval (−0.6 ≲ [Fe/H] ≲ −0.4) suggests that some of these stars emerged quickly on a short gas-depletion timescale. Through measurements of a scale height and length, we argue that these stars are distinct from those heated dynamically by mergers. This chain of high proper-motion stars provides additional support for recent discoveries suggesting that a starburst took place when the young Milky Way encountered the gas-rich GSE progenitor, which eventually led to the settling of metal-enriched gas onto the disk. 
    more » « less