skip to main content


Title: Construction inspection & monitoring with quadruped robots in future human-robot teaming: A preliminary study
Construction inspection and monitoring are key activities in construction projects. Automation of inspection tasks can address existing limitations and inefficiencies of the manual process to enable systematic and consistent construction inspection. However, there is a lack of an in-depth understanding of the process of construction inspection and monitoring and the tasks and sequences involved to provide the basis for task delegation in a human-technology partnership. The purpose of this research is to study the conventional process of inspection and monitoring of construction work currently implemented in construction projects and to develop an alternative process using a quadruped robot as an inspector assistant to overcome the limitations of the conventional process. This paper explores the use of quadruped robots for construction inspection and monitoring with an emphasis on a human-robot teaming approach. Technical development and testing of the robotic technology are not in the scope of this study. The results indicate how inspector assistant quadruped robots can enable a human-technology partnership in future construction inspection and monitoring tasks. The research was conducted through on-site experiments and observations of inspectors during construction inspection and monitoring followed by a semi-structured interview to develop a process map of the conventional construction inspection and monitoring process. The study also includes on-site robot training and experiments with the inspectors to develop an alternative process map to depict future construction inspection and monitoring work with the use of an inspector assistant quadruped robot. Both the conventional and alternative process maps were validated through interview surveys with industry experts against four criteria including, completeness, accuracy, generalizability, and comprehensibility. The findings suggest that the developed process maps reflect existing and future construction inspection and monitoring work.  more » « less
Award ID(s):
2128948
NSF-PAR ID:
10404184
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of building engineering
Volume:
65
ISSN:
2352-7102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Construction project management requires frequent inspections to ensure the quality and progress of the construction work. Multiple stakeholders are involved in the inspection process during the project lifecycle. Some project stakeholders, such as architects, owners, structural engineers are involved with multiple construction projects at a time and are responsible to conduct timely inspection and monitoring tasks. This paper studies the potential of Virtual Reality (VR) and robotics for real-time remote inspection. The benefits and challenges of using VR for construction inspection and monitoring were identified and ranked through a systematic literature review. The top 5 benefits were found to be enhanced collaboration, realistic and immersive visualization, remote presence, reduction in inspection time, and support for decision-making. The top 5 challenges identified in this study include low- resolution displays, limited integration with existing technologies (such as BIM), causing disorientation and dizziness for the user, cost of adoption, and job site internet access limitations. Finally, a new approach was investigated for using VR to enable an immersive experience in remote inspection with an inspector assistant robot for real-time remote construction inspection. The experimental investigation verified the identified benefits and challenges. 
    more » « less
  2. Abstract

    This work seeks to capture how an expert interacts with a structure during a facade inspection so that more detailed and situationally-aware inspections can be done with autonomous robots in the future. Eye tracking maps where an inspector is looking during a structural inspection, and it recognizes implicit human attention. Experiments were performed on a facade during a damage assessment to analyze key, visually-based features that are important for understanding human-infrastructure interaction during the process. For data collection and analysis, experiments were conducted to assess an inspector’s behavioral changes while assessing a real structure. These eye tracking features provided the basis for the inspector’s intent prediction and were used to understand how humans interact with the structure during the inspection processes. This method will facilitate information-sharing and decision-making during the inspection processes for collaborative human-robot teams; thus, it will enable unmanned aerial vehicle (UAV) for future building inspection through artificial intelligence support.

     
    more » « less
  3. Decaying infrastructure maintenance cost allocation depends heavily on accurate and safe inspection in the field. New tools to conduct inspections can assist in prioritizing investments in maintenance and repairs. The industrial revolution termed as “Industry 4.0” is based on the intelligence of machines working with humans in a collaborative workspace. Contrarily, infrastructure management has relied on the human for making day-to-day decisions. New emerging technologies can assist during infrastructure inspections, to quantify structural condition with more objective data. However, today’s owners agree in trusting the inspector’s decision in the field over data collected with sensors. If data collected in the field is accessible during the inspections, the inspector decisions can be improved with sensors. New research opportunities in the human–infrastructure interface would allow researchers to improve the human awareness of their surrounding environment during inspections. This article studies the role of Augmented Reality (AR) technology as a tool to increase human awareness of infrastructure in their inspection work. The domains of interest of this research include both infrastructure inspections (emphasis on the collection of data of structures to inform management decisions) and emergency management (focus on the data collection of the environment to inform human actions). This article describes the use of a head-mounted device to access real-time data and information during their field inspection. The authors leverage the use of low-cost smart sensors and QR code scanners integrated with Augmented Reality applications for augmented human interface with the physical environment. This article presents a novel interface architecture for developing Augmented Reality–enabled inspection to assist the inspector’s workflow in conducting infrastructure inspection works with two new applications and summarizes the results from various experiments. The main contributions of this work to computer-aided community are enabling inspectors to visualize data files from database and real-time data access using an Augmented Reality environment. 
    more » « less
  4. Drones are increasingly used during routine inspections of bridges to improve data consistency, work efficiency, inspector safety, and cost effectiveness. Most drones, however, are operated manually within a visual line of sight and thus unable to inspect long-span bridges that are not completely visible to operators. In this paper, aerial nondestructive evaluation (aNDE) will be envisioned for elevated structures such as bridges, buildings, dams, nuclear power plants, and tunnels. To enable aerial nondestructive testing (aNDT), a human-robot system will be created to integrate haptic sensing and dexterous manipulation into a drone or a structural crawler in augmented/virtual reality (AR/VR) for beyond-visual-line-of-sight (BVLOS) inspection of bridges. Some of the technical challenges and potential solutions associated with aNDT&E will be presented. Example applications of the advanced technologies will be demonstrated in simulated bridge decks with stipulated conditions. The developed human-robot system can transform current on-site inspection to future tele-inspection, minimizing impact to traffic passing over the bridges. The automated tele-inspection can save as much as 75% in time and 95% in cost.

     
    more » « less
  5. The objective of this research is to evaluate vision-based pose estimation methods for on-site construction robots. The prospect of human-robot collaborative work on construction sites introduces new workplace hazards that must be mitigated to ensure safety. Human workers working on tasks alongside construction robots must perceive the interaction to be safe to ensure team identification and trust. Detecting the robot pose in real-time is thus a key requirement in order to inform the workers and to enable autonomous operation. Vision-based (marker-less, marker-based) and sensor-based (IMU, UWB) are two of the main methods for estimating robot pose. The marker-based and sensor-based methods require some additional preinstalled sensors or markers, whereas the marker-less method only requires an on-site camera system, which is common on modern construction sites. In this research, we develop a marker-less pose estimation system, which is based on a convolutional neural network (CNN) human pose estimation algorithm: stacked hourglass networks. The system is trained with image data collected from a factory setup environment and labels of excavator pose. We use a KUKA robot arm with a bucket mounted on the end-effector to represent a robotic excavator in our experiment. We evaluate the marker-less method and compare the result with the robot’s ground truth pose. The preliminary results show that the marker-less method is capable of estimating the pose of the excavator based on a state-of-the-art human pose estimation algorithm. 
    more » « less