skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Stacked Hourglass Networks for Markerless Pose Estimation of Articulated Construction Robots
The objective of this research is to evaluate vision-based pose estimation methods for on-site construction robots. The prospect of human-robot collaborative work on construction sites introduces new workplace hazards that must be mitigated to ensure safety. Human workers working on tasks alongside construction robots must perceive the interaction to be safe to ensure team identification and trust. Detecting the robot pose in real-time is thus a key requirement in order to inform the workers and to enable autonomous operation. Vision-based (marker-less, marker-based) and sensor-based (IMU, UWB) are two of the main methods for estimating robot pose. The marker-based and sensor-based methods require some additional preinstalled sensors or markers, whereas the marker-less method only requires an on-site camera system, which is common on modern construction sites. In this research, we develop a marker-less pose estimation system, which is based on a convolutional neural network (CNN) human pose estimation algorithm: stacked hourglass networks. The system is trained with image data collected from a factory setup environment and labels of excavator pose. We use a KUKA robot arm with a bucket mounted on the end-effector to represent a robotic excavator in our experiment. We evaluate the marker-less method and compare the result with the robot’s ground truth pose. The preliminary results show that the marker-less method is capable of estimating the pose of the excavator based on a state-of-the-art human pose estimation algorithm.  more » « less
Award ID(s):
1734266
PAR ID:
10072688
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
35th International Symposium on Automation and Robotics in Construction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Struck-by accidents are potential safety concerns on construction sites and require a robust machine pose estimation. The development of deep learning methods has enhanced the human pose estimation that can be adapted for articulated machines. These methods require abundant dataset for training, which is challenging and time-consuming to obtain on-site. This paper proposes a fast data collection approach to build the dataset for excavator pose estimation. It uses two industrial robot arms as the excavator and the camera monopod to collect different excavator pose data. The 3D annotation can be obtained from the robot's embedded encoders. The 2D pose is annotated manually. For evaluation, 2,500 pose images were collected and trained with the stacked hourglass network. The results showed that the dataset is suitable for the excavator pose estimation network training in a controlled environment, which leads to the potential of the dataset augmenting with real construction site images. 
    more » « less
  2. Construction robots have drawn increased attention as a potential means of improving construction safety and productivity. However, it is still challenging to ensure safe human-robot collaboration on dynamic and unstructured construction workspaces. On construction sites, multiple entities dynamically collaborate with each other and the situational context between them evolves continually. Construction robots must therefore be equipped to visually understand the scene’s contexts (i.e., semantic relations to surrounding entities), thereby safely collaborating with humans, as a human vision system does. Toward this end, this study builds a unique deep neural network architecture and develops a construction-specialized model by experimenting multiple fine-tuning scenarios. Also, this study evaluates its performance on real construction operations data in order to examine its potential toward real-world applications. The results showed the promising performance of the tuned model: the recall@5 on training and validation dataset reached 92% and 67%, respectively. The proposed method, which supports construction co-robots with the holistic scene understanding, is expected to contribute to promoting safer human-robot collaboration in construction. 
    more » « less
  3. Work-related musculoskeletal disorders (WMSDs) are a leading cause of injury for workers who are performing physically demanding and repetitive construction tasks. With recent advances in robotics, wearable robots are introduced into the construction industry to mitigate the risk of WMSDs by correcting the workers’ postures and reducing the load exerted on their body joints. While wearable robots promise to reduce the muscular and physical demands on workers to perform tasks, there is a lack of understanding of the impact of wearable robots on worker ergonomics. This lack of understanding may lead to new ergonomic injuries for worker swearing exoskeletons. To bridge this gap, this study aims to assess the workers’ ergonomic risk when using a wearable robot (back-support exoskeleton) in one of the most common construction tasks, material handling. In this research, a vision-based pose estimation algorithm was developed to estimate the pose of the worker while wearing a back-support exoskeleton. As per the estimated pose, joint angles between connected body parts were calculated. Then, the worker’s ergonomic risk was assessed from the calculated angles based on the Rapid Entire Body Assessment (REBA) method. Results showed that using the back-support exoskeleton reduced workers’ ergonomic risk by 31.7% by correcting awkward postures of the trunk and knee during material handling tasks, compared to not using the back-support exoskeleton. The results are expected to facilitate the implementation of wearable robots in the construction industry. 
    more » « less
  4. With the advancement of automation and robotic technologies, the teleoperation has been leveraged as a promising solution for human workers in a hazardous construction work environment. Since human operators and construction sites are separated in a distance, teleoperation requires a seamless human-machine interface, an intermediate medium, to communicate between humans and machines in construction sites. Several types of teleoperation interfaces including conventional joysticks, haptic devices, graphic user interfaces, auditory interfaces, and tactile interfaces have been developed to control and command construction robotics remotely. The ultimate goal of human-machine interfaces for remote operations is to make intuitive sensory channels that can provide and receive enough information while reducing the associated cognitive and physical load on human operators. Previously developed interfaces have tried to achieve such goals, but each interface still has challenges that should be assessed for enhancing the future teleoperation application in construction workplaces. This paper examines different human-machine interfaces for excavator teleoperation in terms of its on-site usability and intuitiveness. The capabilities of the interfaces for excavator teleoperation are evaluated based on their limitations and requirements. The outcome is expected to provide better understanding of teleoperation interfaces for excavators and guiding future directions for addressing underlying challenges. 
    more » « less
  5. Autonomous robots that understand human instructions can significantly enhance the efficiency in human-robot assembly operations where robotic support is needed to handle unknown objects and/or provide on-demand assistance. This paper introduces a vision AI-based method for human-robot collaborative (HRC) assembly, enabled by a large language model (LLM). Upon 3D object reconstruction and pose establishment through neural object field modelling, a visual servoing-based mobile robotic system performs object manipulation and navigation guidance to a mobile robot. The LLM model provides text-based logic reasoning and high-level control command generation for natural human-robot interactions. The effectiveness of the presented method is experimentally demonstrated. 
    more » « less