Abstract Social group structure is highly variable and can be important for nearly every aspect of behavior and its fitness consequences. Group structure can be modeled using social network analysis, but we know little about the evolutionary factors shaping and maintaining variation in how individuals are embedded within their networks (i.e., network position). While network position is a pervasive target of selection, it remains unclear whether network position is heritable and can respond to selection. Furthermore, it is unclear how environmental factors interact with genotypic effects on network positions, or how environmental factors shape selection on heritable network structure. Here we show multiple measures of social network position are heritable, using replicate genotypes and replicate social groups ofDrosophila melanogasterflies. Our results indicate genotypic differences in network position are largely robust to changes in the environment flies experience, though some measures of network position do vary across environments. We also show selection on multiple network position metrics depends on the environmental context they are expressed in, laying the groundwork for better understanding how spatio-temporal variation in selection contributes to the evolution of variable social group structure. 
                        more » 
                        « less   
                    
                            
                            Indirect genetic effects for social network structure in Drosophila melanogaster
                        
                    
    
            The position an individual holds in a social network is dependent on both its direct and indirect social interactions. Because social network position is dependent on the actions and interactions of conspecifics, it is likely that the genotypic composition of individuals within a social group impacts individuals' network positions. However, we know very little about whether social network positions have a genetic basis, and even less about how the genotypic makeup of a social group impacts network positions and structure. With ample evidence indicating that network positions influence various fitness metrics, studying how direct and indirect genetic effects shape network positions is crucial for furthering our understanding of how the social environment can respond to selection and evolve. Using replicate genotypes of Drosophila melanogaster fruit flies, we created social groups that varied in their genotypic makeup. Social groups were videoed, and networks were generated using motion-tracking software. We found that both an individual's own genotype and the genotypes of conspecifics in its social group affect its position within a social network. These findings provide an early example of how indirect genetic effects and social network theory can be linked, and shed new light on how quantitative genetic variation shapes the structure of social groups. This article is part of a discussion meeting issue ‘Collective behaviour through time’. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10404360
- Date Published:
- Journal Name:
- Philosophical Transactions of the Royal Society B: Biological Sciences
- Volume:
- 378
- Issue:
- 1874
- ISSN:
- 0962-8436
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Social behaviors can be influenced by the genotypes of interacting individuals through indirect genetic effects (IGEs) and can also display developmental plasticity. We investigated how develop- mental IGEs, which describe the effects of a prior social partner’s geno- type on later behavior, can influence aggression in male Drosophila melanogaster. We predicted that developmental IGEs cannot be esti- mated by simply extending the effects of contextual IGEs over time and instead have their own unique effects on behavior. On day 1 of the ex- periment, we measured aggressive behavior in 15 genotypic pairings (n p 600 males). On day 2, each of the males was paired with a new opponent, and aggressive behavior was again measured. We found con- textual IGEs on day 1 of the experiment and developmental IGEs on day 2 of the experiment: the influence of the day 1 partner’s genotype on the focal individual’s day 2 behavior depended on the genotypic iden- tity of both the day 1 partner and the focal male. Importantly, the devel- opmental IGEs in our system produced fundamentally different dynam- ics than the contextual IGEs, as the presence of IGEs was altered over time. These findings represent some of the first empirical evidence dem- onstrating developmental IGEs, a first step toward incorporating de- velopmental IGEs into our understanding of behavioral evolution.more » « less
- 
            Understanding how individual differences arise and how their effects propagate through groups are fundamental issues in biology. Individual differences can arise from indirect genetic effects (IGE): genetically based variation in the conspecifics with which an individual interacts. Using a clonal species, the Amazon molly ( Poecilia formosa ), we test the hypothesis that IGE can propagate to influence phenotypes of the individuals that do not experience them firsthand. We tested this by exposing genetically identical Amazon mollies to conspecific social partners of different clonal lineages, and then moving these focal individuals to new social groups in which they were the only member to have experienced the IGE. We found that genetically different social environments resulted in the focal animals experiencing different levels of aggression, and that these IGE carried over into new social groups to influence the behaviour of naive individuals. These data reveal that IGE can cascade beyond the individuals that experience them. Opportunity for cascading IGE is ubiquitous, especially in species with long-distance dispersal or fission–fusion group dynamics. Cascades could amplify (or mitigate) the effects of IGE on trait variation and on evolutionary trajectories. Expansion of the IGE framework to include cascading and other types of carry-over effects will therefore improve understanding of individual variation and social evolution and allow more accurate prediction of population response to changing environments.more » « less
- 
            Abstract While the positive relationship between plant diversity and ecosystem functioning is frequently observed and often attributed to direct plant–plant interactions, it remains unclear whether and how the effects of plant diversity endure through soil legacy effects, particularly at the level of genotypic diversity. We manipulated the genotypic diversity ofScirpus mariqueterand tested its soil legacy effects on a conspecific phytometer under low‐ and high‐water availability conditions. We found that genotypic diversity enhanced phytometer productivity through soil legacies, with stronger effects under low‐water availability conditions, improving its resistance to water stress. Moreover, this effect was attributed to the association between asexual and sexual reproductive strategies by increasing ramet number to ensure plant survival under low‐water availability and promoting sexual reproduction to escape stress. The observed diversity effects were primarily associated with increased levels of microbial biomass in soils trained by populations with diverse genotypes. Our findings highlight the importance of plant genotypic diversity in modulating ecosystem functioning through soil legacies and call for management measures that promote genetic diversity to make ecosystems sustainable in the face of climate change.more » « less
- 
            Abstract Knowledge of someone’s friendships can powerfully impact how one interacts with them. Previous research suggests that information about others’ real-world social network positions—e.g. how well-connected they are (centrality), ‘degrees of separation’ (relative social distance)—is spontaneously encoded when encountering familiar individuals. However, many types of information covary with where someone sits in a social network. For instance, strangers’ face-based trait impressions are associated with their social network centrality, and social distance and centrality are inherently intertwined with familiarity, interpersonal similarity and memories. To disentangle the encoding of the social network position from other social information, participants learned a novel social network in which the social network position was decoupled from other factors and then saw each person’s image during functional magnetic resonance imaging scanning. Using representational similarity analysis, we found that social network centrality was robustly encoded in regions associated with visual attention and mentalizing. Thus, even when considering a social network in which one is not included and where centrality is unlinked from perceptual and experience-based features to which it is inextricably tied in naturalistic contexts, the brain encodes information about others’ importance in that network, likely shaping future perceptions of and interactions with those individuals.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    