skip to main content


Title: Turbulence in the tail of a jellyfish galaxy
ABSTRACT

When galaxies move through the intracluster medium (ICM) inside galaxy clusters, the ram pressure of the ICM can strip the gas from galaxies. The stripped gas forms tails on the trailing side. These galaxies are hence dubbed ‘jellyfish galaxies’. ESO 137-001 is a quintessential jellyfish galaxy located in the nearest rich cluster, the Norma cluster. Its spectacular multiphase tail has complex morphology and kinematics both from the imprinted galaxy’s interstellar medium (ISM) and as a result of the interactions between the stripped gas and the surrounding hot plasma, mediated by radiative cooling and magnetic fields. We study the kinematics of the multiphase tail using high-resolution observations of the ionized and the molecular gas in the entire structure. We calculate the velocity structure functions in moving frames along the tail and find that turbulence driven by Kelvin–Helmholtz (KH) instability quickly overwhelms the original ISM turbulence and saturates at ∼30 kpc. There is also a hint that the far end of the tail has possibly started to inherit pre-existing large-scale ICM turbulence likely caused by structure formation. Turbulence measured by the molecular gas is generally consistent with that measured by the ionized gas in the tail but has a slightly lower amplitude. Most of the measured turbulence is below the mean free path of the hot ICM (∼11 kpc). Using warm/cool gas as a tracer of the hot ICM, we find that the isotropic viscosity of the hot plasma must be suppressed below 0.01 per cent Spitzer level.

 
more » « less
Award ID(s):
2107735
NSF-PAR ID:
10404414
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
521
Issue:
3
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 4785-4791
Size(s):
["p. 4785-4791"]
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT Recent studies have highlighted the potential significance of intracluster medium (ICM) clumping and its important implications for cluster cosmology and baryon physics. Many of the ICM clumps can originate from infalling galaxies, as stripped interstellar medium (ISM) mixing into the hot ICM. However, a direct connection between ICM clumping and stripped ISM has not been unambiguously established before. Here, we present the discovery of the first and still the only known isolated cloud (or orphan cloud [OC]) detected in both X-rays and H α in the nearby cluster A1367. With an effective radius of 30 kpc, this cloud has an average X-ray temperature of 1.6 keV, a bolometric X-ray luminosity of ∼3.1 × 1041 erg s−1, and a hot gas mass of ∼1010 M⊙. From the Multi-Unit Spectroscopic Explorer (MUSE) data, the OC shows an interesting velocity gradient nearly along the east-west direction with a low level of velocity dispersion of ∼80 km s−1, which may suggest a low level of the ICM turbulence. The emission line diagnostics suggest little star formation in the main H α cloud and a low-ionization (nuclear) emission-line regions like spectrum, but the excitation mechanisms remain unclear. This example shows that stripped ISM, even long after the initial removal from the galaxy, can still induce ICM inhomogeneities. We suggest that the magnetic field can stabilize the OC by suppressing hydrodynamic instabilities and thermal conduction. This example also suggests that at least some ICM clumps are multiphase in nature and implies that the ICM clumps can also be traced in H α. Thus, future deep and wide-field H α surveys can be used to probe the ICM clumping and turbulence. 
    more » « less
  2. ABSTRACT Galaxy clusters grow primarily through the continuous accretion of group-scale haloes. Group galaxies experience preprocessing during their journey into clusters. A star-bursting compact group, the Blue Infalling Group (BIG), is plunging into the nearby cluster A1367. Previous optical observations reveal rich tidal features in the BIG members, and a long H α trail behind. Here, we report the discovery of a projected ∼250 kpc X-ray tail behind the BIG using Chandra and XMM–Newton observations. The total hot gas mass in the tail is ∼7 × 1010 M⊙ with an X-ray bolometric luminosity of ∼3.8 × 1041 erg s−1. The temperature along the tail is ∼1 keV, but the apparent metallicity is very low, an indication of the multi-T nature of the gas. The X-ray and H α surface brightnesses in the front part of the BIG tail follow the tight correlation established from a sample of stripped tails in nearby clusters, which suggests the multiphase gas originates from the mixing of the stripped interstellar medium (ISM) with the hot intracluster medium (ICM). Because thermal conduction and hydrodynamic instabilities are significantly suppressed, the stripped ISM can be long lived and produce ICM clumps. The BIG provides us a rare laboratory to study galaxy transformation and preprocessing. 
    more » « less
  3. The intracluster medium (ICM) in the centers of galaxy clusters is heavily influenced by the “feedback” from supermassive black holes (SMBHs). Feedback can drive turbulence in the ICM and turbulent dissipation can potentially be an important source of heating. Due to the limited spatial and spectral resolutions of X-ray telescopes, direct observations of turbulence in the hot ICM have been challenging. Recently, we developed a new method to measure turbulence in the ICM using multiphase filaments as tracers. These filaments are ubiquitous in cluster centers and can be observed at very high resolution using optical and radio telescopes. We study the kinematics of the filaments by measuring their velocity structure functions (VSFs) over a wide range of scales in the centers of ∼ 10 galaxy clusters. We find features of the VSFs that correlate with the SMBHs activities, suggesting that SMBHs are the main driver of gas motions in the centers of galaxy clusters. In all systems, the VSF is steeper than the classical Kolmogorov expectation and the slopes vary from system to system. One theoretical explanation is that the VSFs we have measured so far mostly reflect the motion of the driver (jets and bubbles) rather than the cascade of turbulence. We show that in Abell 1795, the VSF of the outer filaments far from the SMBH flattens on small scales to a Kolmogorov slope, suggesting that the cascade is only detectable farther out with the current telescope resolution. The level of turbulent heating computed at small scales is typically an order of magnitude lower than that estimated at the driving scale. Even though SMBH feedback heavily influences the kinematics of the ICM in cluster centers, the level of turbulence it drives is rather low, and turbulent heating can only offset ≲ 10% of the cooling loss, consistent with the findings of numerical simulations. 
    more » « less
  4. Abstract

    Massive elliptical galaxies harbor large amounts of hot gas (T≳ 106K) in their interstellar medium (ISM) but are typically quiescent in star formation. The jets of active galactic nuclei (AGNs) and Type Ia supernovae (SNe Ia) inject energy into the ISM, which offsets its radiative losses and keeps it hot. SNe Ia deposit their energy locally within the galaxy compared to the larger few ×10 kiloparsec-scale AGN jets. In this study, we perform high-resolution (5123) hydrodynamic simulations of a local (1 kpc3) density-stratified patch of the ISM of massive galaxies. We include radiative cooling and shell-averaged volume heating, as well as randomly exploding SN Ia. We study the effect of different fractions of supernova (SN) heating (with respect to the net cooling rate), different initial ISM density/entropy (which controls the growth timettiof the thermal instability), and different degrees of stratification (which affect the freefall timetff). We find that SNe Ia drive predominantly compressive turbulence in the ISM with a velocity dispersion ofσvup to 40 km s−1and logarithmic density dispersion ofσs∼ 0.2–0.4. These fluctuations trigger multiphase condensation in regions of the ISM, wheremin(tti)/tff0.6exp(6σs), in agreement with theoretical expectations that large density fluctuations efficiently trigger multiphase gas formation. Since the SN Ia rate is not self-adjusting, when the net cooling drops below the net heating rate, SNe Ia drive a hot wind which sweeps out most of the mass in our local model. Global simulations are required to assess the ultimate fate of this gas.

     
    more » « less
  5. Abstract Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disk galaxies. Stellar feedback is modeled using the FIRE physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low and moderate luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳ 20 − 30 Myr, the inner ∼1 − 10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor ∼2 − 3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker disks and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations. 
    more » « less