skip to main content

Title: Integral representations of rank two false theta functions and their modularity properties
Abstract False theta functions form a family of functions with intriguing modular properties and connections to mock modular forms. In this paper, we take the first step towards investigating modular transformations of higher rank false theta functions, following the example of higher depth mock modular forms. In particular, we prove that under quite general conditions, a rank two false theta function is determined in terms of iterated, holomorphic, Eichler-type integrals. This provides a new method for examining their modular properties and we apply it in a variety of situations where rank two false theta functions arise. We first consider generic parafermion characters of vertex algebras of type $$A_2$$ A 2 and $$B_2$$ B 2 . This requires a fairly non-trivial analysis of Fourier coefficients of meromorphic Jacobi forms of negative index, which is of independent interest. Then we discuss modularity of rank two false theta functions coming from superconformal Schur indices. Lastly, we analyze $${\hat{Z}}$$ Z ^ -invariants of Gukov, Pei, Putrov, and Vafa for certain plumbing $$\mathtt{H}$$ H -graphs. Along the way, our method clarifies previous results on depth two quantum modularity.
Authors:
; ; ;
Award ID(s):
2101844
Publication Date:
NSF-PAR ID:
10350001
Journal Name:
Research in the Mathematical Sciences
Volume:
8
Issue:
4
ISSN:
2522-0144
Sponsoring Org:
National Science Foundation
More Like this
  1. This article is in commemoration of Ramanujan's election as Fellow of The Royal Society 100 years ago, as celebrated at the October 2018 scientific meeting at the Royal Society in London. Ramanujan's last letter to Hardy, written shortly after his election, surrounds his mock theta functions. While these functions have been of great importance and interest in the decades following Ramanujan's death in 1920, it was unclear how exactly they fit into the theory of modular forms—Dyson called this ‘a challenge for the future’ at another centenary conference in Illinois in 1987, honouring the 100th anniversary of Ramanujan's birth. In the early 2000s, Zwegers finally recognized that Ramanujan had discovered glimpses of special families of non-holomorphic modular forms, which we now know to be Bruinier and Funke's harmonic Maass forms from 2004, the holomorphic parts of which are called mock modular forms. As of a few years ago, a fundamental question from Ramanujan's last letter remained, on a certain asymptotic relationship between mock theta functions and ordinary modular forms. The author, with Ono and Rhoades, revisited Ramanujan's asymptotic claim, and established a connection between mock theta functions and quantum modular forms, which were not defined until 90 years later inmore »2010 by Zagier. Here, we bring together past and present, and study the relationships between mock modular forms and quantum modular forms, with Ramanujan's mock theta functions as motivation. In particular, we highlight recent work of Bringmann–Rolen, Choi–Lim–Rhoades and Griffin–Ono–Rolen in our discussion. This article is largely expository, but not exclusively: we also establish a new interpretation of Ramanujan's radial asymptotic limits in the subject of topology. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.« less
  2. Abstract We present measurements of cosmic shear two-point correlation functions (TPCFs) from Hyper Suprime-Cam Subaru Strategic Program (HSC) first-year data, and derive cosmological constraints based on a blind analysis. The HSC first-year shape catalog is divided into four tomographic redshift bins ranging from $z=0.3$ to 1.5 with equal widths of $\Delta z =0.3$. The unweighted galaxy number densities in each tomographic bin are 5.9, 5.9, 4.3, and $2.4\:$arcmin$^{-2}$ from the lowest to highest redshifts, respectively. We adopt the standard TPCF estimators, $\xi _\pm$, for our cosmological analysis, given that we find no evidence of significant B-mode shear. The TPCFs are detected at high significance for all 10 combinations of auto- and cross-tomographic bins over a wide angular range, yielding a total signal-to-noise ratio of 19 in the angular ranges adopted in the cosmological analysis, $7^{\prime }<\theta <56^{\prime }$ for $\xi _+$ and $28^{\prime }<\theta <178^{\prime }$ for $\xi _-$. We perform the standard Bayesian likelihood analysis for cosmological inference from the measured cosmic shear TPCFs, including contributions from intrinsic alignment of galaxies as well as systematic effects from PSF model errors, shear calibration uncertainty, and source redshift distribution errors. We adopt a covariance matrix derived from realistic mock catalogs constructedmore »from full-sky gravitational lensing simulations that fully account for survey geometry and measurement noise. For a flat $\Lambda$ cold dark matter model, we find $S\,_8 \equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.804_{-0.029}^{+0.032}$, and $\Omega _{\rm m}=0.346_{-0.100}^{+0.052}$. We carefully check the robustness of the cosmological results against astrophysical modeling uncertainties and systematic uncertainties in measurements, and find that none of them has a significant impact on the cosmological constraints.« less
  3. We derive a holomorphic anomaly equation for the Vafa-Wittenpartition function for twisted four-dimensional \mathcal{N} =4 𝒩 = 4 super Yang-Mills theory on \mathbb{CP}^{2} ℂ ℙ 2 for the gauge group SO(3) S O ( 3 ) from the path integral of the effective theory on the Coulomb branch.The holomorphic kernel of this equation, which receives contributionsonly from the instantons, is not modular but ‘mock modular’. Thepartition function has correct modular properties expected from S S -dualityonly after including the anomalous nonholomorphic boundary contributionsfrom anti-instantons. Using M-theory duality, we relate this phenomenonto the holomorphic anomaly of the elliptic genus of a two-dimensionalnoncompact sigma model and compute it independently in two dimensions.The anomaly both in four and in two dimensions can be traced to atopological term in the effective action of six-dimensional (2,0) ( 2 , 0 ) theory on the tensor branch. We consider generalizations to othermanifolds and other gauge groups to show that mock modularity is genericand essential for exhibiting duality when the relevant field space isnoncompact.
  4. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  5. Abstract

    The Abundance Matching Box for the Epoch of Reionization (AMBER) is a semi-numerical code for modeling the cosmic dawn. The new algorithm is not based on the excursion set formalism for reionization, but takes the novel approach of calculating the reionization-redshift fieldzre(x)assuming that hydrogen gas encountering higher radiation intensity are photoionized earlier. Redshift values are assigned while matching the abundance of ionized mass according to a given mass-weighted ionization fractionx¯i(z). The code has the unique advantage of allowing users to directly specify the reionization history through the redshift midpointzmid, duration Δz, and asymmetryAzinput parameters. The reionization process is further controlled through the minimum halo massMminfor galaxy formation and the radiation mean free pathlmfpfor radiative transfer. We implement improved methods for constructing density, velocity, halo, and radiation fields, which are essential components for modeling reionization observables. We compare AMBER with two other semi-numerical methods and find that our code more accurately reproduces the results from radiation-hydrodynamic simulations. The parallelized code is over four orders of magnitude faster than radiative transfer simulations and will efficiently enable large-volume models, full-sky mock observations, and parameter-space studies. AMBER will be mademore »publicly available to facilitate and transform studies of the Epoch of Reionization.

    « less