skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Camaroptera: A Long-range Image Sensor with Local Inference for Remote Sensing Applications
Batteryless image sensors present an opportunity for long-life, long-range sensor deployments that require zero maintenance, and have low cost. Such deployments are critical for enabling remote sensing applications, e.g., instrumenting national highways, where individual devices are deployed far (kms away) from supporting infrastructure. In this work, we develop and characterize Camaroptera, the first batteryless image-sensing platform to combine energy-harvesting with active, long-range (LoRa) communication. We also equip Camaroptera with a Machine Learning-based processing pipeline to mitigate costly, long-distance communication of image data. This processing pipeline filters out uninteresting images and only transmits the images interesting to the application. We show that compared to running a traditional Sense-and-Send workload, Camaroptera’s Local Inference pipeline captures and sends upto \( 12\times \) more images of interest to an application. By performing Local Inference , Camaroptera also sends upto \( 6.5\times \) fewer uninteresting images, instead using that energy to capture upto \( 14.7\times \) more new images, increasing its sensing effectiveness and availability. We fully prototype the Camaroptera hardware platform in a compact, 2 cm \( \times \) 3 cm \( \times \) 5 cm volume. Our evaluation demonstrates the viability of a batteryless, remote, visual-sensing platform in a small package that collects and usefully processes acquired data and transmits it over long distances (kms), while being deployed for multiple decades with zero maintenance.  more » « less
Award ID(s):
1751029
PAR ID:
10404552
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Embedded Computing Systems
Volume:
21
Issue:
3
ISSN:
1539-9087
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Energy-harvesting devices have enabled Internet of Things applications that were impossible before. One core challenge of batteryless sensors that operate intermittently is reliable timekeeping. State-of-the-art low-power real-time clocks suffer from long start-up times (order of seconds) and have low timekeeping granularity (tens of milliseconds at best), often not matching timing requirements of devices that experience numerous power outages per second. Our key insight is that time can be inferred by measuring alternative physical phenomena, like the discharge of a simple RC circuit, and that timekeeping energy cost and accuracy can be modulated depending on the run-time requirements. We achieve these goals with a multi-tier timekeeping architecture, named Cascaded Hierarchical Remanence Timekeeper (CHRT), featuring an array of different RC circuits to be used for dynamic timekeeping requirements. The CHRT and its accompanying software interface are embedded into a fresh batteryless wireless sensing platform, called Botoks, capable of tracking time across power failures. Low start-up time (max 5 ms), high resolution (up to 1 ms) and run-time reconfigurability are the key features of our timekeeping platform. We developed two time-sensitive batteryless applications to demonstrate the approach: a bicycle analytics tool, where the CHRT is used to track time between revolutions of a bicycle wheel, and wireless communication, where the CHRT enables radio synchronization between two intermittently-powered sensors. 
    more » « less
  2. Ko, Steve (Ed.)
    Today's smart devices have short battery lifetimes, high installation and maintenance costs, and rapid obsolescence - all leading to the explosion of electronic waste in the past two decades. These problems will worsen as the number of connected devices grows to one trillion by 2035. Energy harvesting, battery-free devices offer an alternative. Getting rid of the battery reduces e-waste, promises long lifetimes, and enables deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging. The lack of platform support for advanced (32-bit) microprocessors and specialized accelerators, which can execute dataintensive machine-learning tasks, has held back batteryless devices. 
    more » « less
  3. The increasing computational demand from growing data rates and complex machine learning (ML) algorithms in large-scale scientific experiments has driven the adoption of the Services for Optimized Network Inference on Coprocessors (SONIC) approach. SONIC accelerates ML inference by offloading it to local or remote coprocessors to optimize resource utilization. Leveraging its portability to different types of coprocessors, SONIC enhances data processing and model deployment efficiency for cutting-edge research in high energy physics (HEP) and multi-messenger astrophysics (MMA). We developed the SuperSONIC project, a scalable server infrastructure for SONIC, enabling the deployment of computationally intensive tasks to Kubernetes clusters equipped with graphics processing units (GPUs). Using NVIDIA Triton Inference Server, SuperSONIC decouples client workflows from server infrastructure, standardizing communication, optimizing throughput, load balancing, and monitoring. SuperSONIC has been successfully deployed for the CMS and ATLAS experiments at the CERN Large Hadron Collider (LHC), the IceCube Neutrino Observatory (IceCube), and the Laser Interferometer Gravitational-Wave Observatory (LIGO) and tested on Kubernetes clusters at Purdue University, the National Research Platform (NRP), and the University of Chicago. SuperSONIC addresses the challenges of the Cloud-native era by providing a reusable, configurable framework that enhances the efficiency of accelerator-based inference deployment across diverse scientific domains and industries. 
    more » « less
  4. In the realm of neuroscience, mapping the three-dimensional (3D) neural circuitry and architecture of the brain is important for advancing our understanding of neural circuit organization and function. This study presents a novel pipeline that transforms mouse brain samples into detailed 3D brain models using a collaborative data analytics platform called “Texera.” The user-friendly Texera platform allows for effective interdisciplinary collaboration between team members in neuroscience, computer vision, and data processing. Our pipeline utilizes the tile images from a serial two-photon tomography/TissueCyte system, then stitches tile images into brain section images, and constructs 3D whole-brain image datasets. The resulting 3D data supports downstream analyses, including 3D whole-brain registration, atlas-based segmentation, cell counting, and high-resolution volumetric visualization. Using this platform, we implemented specialized optimization methods and obtained significant performance enhancement in workflow operations. We expect the neuroscience community can adopt our approach for large-scale image-based data processing and analysis. 
    more » « less
  5. Scientists continue to study the red tide and fish-kill events happening in Florida. Machine learning applications using remote sensing data on coastal waters to monitor water quality parameters and detect harmful algal blooms are also being studied. Unmanned Surface Vehicles (USVs) and Autonomous Underwater Vehicles (AUVs) are often deployed on data collection and disaster response missions. To enhance study and mitigation efforts, robots must be able to use available data to navigate these underwater environments. In this study, we compute a satellite-derived underwater environment (SDUE) model by implementing a supervised machine learning model where remote sensing reflectance (Rrs) indices are labeled with in-situ data they correlate with. The models predict bathymetry and water quality parameters given a recent remote sensing image. In our experiment, we use Sentine1-2 (S2) images and in-situ data of the Biscayne Bay to create an SDUE that can be used as a Chlorophyll-a map. The SDUE is then used in an Extended Kalman Filter (EKF) application that solves an underwater vehicle localization and navigation problem. 
    more » « less