skip to main content


This content will become publicly available on May 17, 2024

Title: Protean: Adaptive Hardware-Accelerated Intermittent Computing
Today's smart devices have short battery lifetimes, high installation and maintenance costs, and rapid obsolescence - all leading to the explosion of electronic waste in the past two decades. These problems will worsen as the number of connected devices grows to one trillion by 2035. Energy harvesting, battery-free devices offer an alternative. Getting rid of the battery reduces e-waste, promises long lifetimes, and enables deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging. The lack of platform support for advanced (32-bit) microprocessors and specialized accelerators, which can execute dataintensive machine-learning tasks, has held back batteryless devices.  more » « less
Award ID(s):
2038853 2145584 2030251
NSF-PAR ID:
10480082
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Editor(s):
Ko, Steve
Publisher / Repository:
Association of Computing Machinery
Date Published:
Journal Name:
GetMobile: Mobile Computing and Communications
Volume:
27
Issue:
1
ISSN:
2375-0529
Page Range / eLocation ID:
5 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Battery-free and intermittently powered devices offer long lifetimes and enable deployment in new applications and environments. Unfortunately, developing sophisticated inference-capable applications is still challenging due to the lack of platform support for more advanced (32-bit) microprocessors and specialized accelerators---which can execute data-intensive machine learning tasks, but add complexity across the stack when dealing with intermittent power. We present Protean to bridge the platform gap for inference-capable battery-free sensors. Designed for runtime scalability, meeting the dynamic range of energy harvesters with matching heterogeneous processing elements like neural network accelerators. We develop a modular "plug-and-play" hardware platform, SuperSensor, with a reconfigurable energy storage circuit that powers a 32-bit ARM-based microcontroller with a convolutional neural network accelerator. An adaptive task-based runtime system, Chameleon, provides intermittency-proof execution of machine learning tasks across heterogeneous processing elements. The runtime automatically scales and dispatches these tasks based on incoming energy, current state, and programmer annotations. A code generator, Metamorph, automates conversion of ML models to intermittent safe execution across heterogeneous compute elements. We evaluate Protean with audio and image workloads and demonstrate up to 666x improvement in inference energy efficiency by enabling usage of modern computational elements within intermittent computing. Further, Protean provides up to 166% higher throughput compared to non-adaptive baselines. 
    more » « less
  2. Abstract

    To meet growing energy demands, degradation mechanisms of energy storage devices must be better understood. As a non‐destructive tool, X‐ray Computed Tomography (CT) has been increasingly used by the battery community to perform in situ experiments that can investigate dynamic phenomena. However, few have used X‐ray CT to study representative battery systems over long cycle lifetimes (>100 cycles). Here, the in situ CT study of Zn–Ag batteries is reported and the effects of current collector parasitic gassing over long‐term storage and cycling are demonstrated. Performance representative in situ CT cells are designed that can achieve >250 cycles at a high areal capacity of 12.5 mAh cm−2. Combined with electrochemical experiments, the effects of current collector parasitic gassing are revealed with micro‐scale CT. The volume expansion and evolution of ZnO and Zn depletion are quantified with cycling and elevated temperature testing. The experimental insights are utilized to develop larger form‐factor (4 cm2) cells with electrochemically compatible current collectors. With this, over 500 cycles at a high capacity of 12.5 mAh cm−2for a 4 cm2form‐factor are demonstrated. This work demonstrates that in situ X‐ray CT used in long cycle‐lifetime studies can be applied to examine a multitude of battery chemistries to improve performances.

     
    more » « less
  3. A digital non-Foster radio approach is proposed to mitigate Wheeler-Chu limits of electrically-small antennas, with significant potential to significantly reduce energy consumption in the VHF (very high frequency) band, where radio propagation losses below 200 MHz are 100 times less than losses above 2 GHz. Operation at lower frequency could greatly extend lifetimes of small low-power Internet-of-Things devices such as battery-powered sensors operating primarily as transmitters. Unfortunately, physical size constraints and the Wheeler-Chu limit have greatly hindered utilization of VHF bands for mobile devices, where even a 200 MHz half-wave dipole is an unwieldy 0.75 m. However, recent advances in non-Foster impedance matching methods have overcome these limits. In addition, recent digital non-Foster methods are shown to closely resemble digital radio architectures, suggesting that these newer digital non-Foster methods can be readily adopted in new digital radio designs. Therefore, a novel digital non-Foster radio architecture is proposed, where digital non-Foster methods enable small devices in energy-efficient VHF bands while overcoming Wheeler-Chu antenna-size limits. 
    more » « less
  4. Automating operations of objects has made life easier and more convenient for billions of people, especially those with limited motor capabilities. On the other hand, even able-bodied users might not always be able to perform manual operations (e.g., both hands are occupied), and manual operations might be undesirable for hygiene purposes (e.g., contactless devices). As a result, automation systems like motion-triggered doors, remote-control window shades, contactless toilet lids have become increasingly popular in private and public environments. Yet, these systems are hampered by complex building wiring or short battery lifetimes, negating their positive benefits for accessibility, energy saving, healthcare, and other domains. In this paper we explore how these types of objects can be powered in perpetuity by the energy generated from a unique energy source - user interactions, specifically, the manual manipulations of objects by users who can afford them when they can afford them. Our assumption is that users' capabilities for object operations are heterogeneous, there are desires for both manual and automatic operations in most environments, and that automatic operations are often not needed as frequently - for example, an automatic door in a public space is often manually opened many times before a need for automatic operation shows up. The energy harvested by those manual operations would be sufficient to power that one automatic operation. We instantiate this idea by upcycling common everyday objects with devices which have various mechanical designs powered by a general-purpose backbone embedded system. We call these devices, MiniKers. We built a custom driver circuit that can enable motor mechanisms to toggle between generating powers (i.e., manual operation) and actuating objects (i.e., automatic operation). We designed a wide variety of mechanical mechanisms to retrofit existing objects and evaluated our system with a 48-hour deployment study, which proves the efficacy of MiniKers as well as shedding light into this people-as-power approach as a feasible solution to address energy needed for smart environment automation. 
    more » « less
  5. Supercapacitor energy storage devices are well suited to meet the rigorous demands of future portable consumer electronics (PCEs) due to their high energy and power densities (i.e., longer battery-life and rapid charging, respectively) and superior operational lifetimes (10 times greater than lithium-ion batteries). To date, research efforts have been narrowly focused on improving the specific capacitance of these materials; however, emerging technologies are increasingly demanding competitive performance with regards to other criteria, including scalability of fabrication and electrochemical stability. In this regard, we developed a polyaniline (PANI) derivative that contains a carbazole unit copolymerized with 2,5-dimethyl-p-phenylenediamine (Cbz-PANI-1) and determined its optoelectronic properties, electrical conductivity, processability, and electrochemical stability. Importantly, the polymer exhibits good solubility in various solvents, which enables the use of scalable spray-coating and drop-casting methods to fabricate electrodes. Cbz-PANI-1 was used to fabricate electrodes for supercapacitor devices that exhibits a maximum areal capacitance of 64.8 mF cm–2 and specific capacitance of 319 F g–1 at a current density of 0.2 mA cm–2. Moreover, the electrode demonstrates excellent cyclic stability (≈ 83% of capacitance retention) over 1000 CV cycles. Additionally, we demonstrate the charge storage performance of Cbz-PANI-1 in a symmetrical supercapacitor device, which also exhibits excellent cyclic stability (≈ 91% of capacitance retention) over 1000 charge–discharge cycles. 
    more » « less