skip to main content


This content will become publicly available on April 1, 2024

Title: Experimental study on combined effect of mechanical loads and corrosion using tube-packaged long-gauge fiber Bragg grating sensors

This study presents an experimental investigation on the combined effect of mechanical loads and corrosion using the designed polytetrafluoroethylene tube-packaged fiber Bragg grating (FBG) sensors, as to implement long-gauge FBG (LFBG) sensors in corrosion detection practices for structural health monitoring. A simplified LFBG-based sensing model was proposed for strain measurement in terms of the Bragg wavelength change. Correspondingly, a systematic corrosion assessment strategy was developed to estimate corrosion severity and average corrosion rate. Upon this, the experimental study was performed on epoxy-coated steel specimens embedded with LFBG sensors, where the loading, corrosion, and combined loading–corrosion tests were used to explore the effect of mechanical loads on corrosion behavior. Test results revealed that the specimens subjected to combined conditions exhibited more severe corrosion damage. The maximum mass loss was observed to be 1.82 and 2.43 in percentage under individual corrosion and combined loading–corrosion conditions, respectively. Also, the pit depth under combined conditions was found to develop rapidly in the early stage. The pit depth severity ratio was around 0.2–0.8 during the 67 days of exposure, indicating an evident impact of loading on corrosion severity. Furthermore, the maximum average corrosion rate under combined conditions was found to be 5.66 times that under individual corrosion conditions.

 
more » « less
Award ID(s):
1750316
NSF-PAR ID:
10404601
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Structural Health Monitoring
Volume:
22
Issue:
6
ISSN:
1475-9217
Format(s):
Medium: X Size: p. 3985-4004
Size(s):
["p. 3985-4004"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Fiber Bragg grating (FBG) sensors have been applied to assess strains, stresses, loads, corrosion, and temperature for structural health monitoring (SHM) of steel infrastructure, such as buildings, bridges, and pipelines. Since a single FBG sensor measures a particular parameter at a local spot, it is challenging to detect different types of anomalies and interactions of anomalies. This paper presents an approach to assess interactive anomalies caused by mechanical loading and corrosion on epoxy coated steel substrates using FBG sensors in real time. Experiments were performed by comparing the monitored center wavelength changes in the conditions with loading only, corrosion only, and simultaneous loading and corrosion. The theoretical and experimental results indicated that there were significant interactive influences between loading and corrosion for steel substrates. Loading accelerated the progress of corrosion for the epoxy coated steel substrate, especially when delamination in the epoxy coating was noticed. Through the real-time monitoring from the FBG sensors, the interactions between the anomalies induced by the loading and corrosion can be quantitatively evaluated through the corrosion depth and the loading contact length. These fundamental understandings of the interactions of different anomalies on steel structures can provide valuable information to engineers for better management of steel structures. 
    more » « less
  2. Sanders, Glen A. ; Lieberman, Robert A. ; Udd Scheel, Ingrid (Ed.)
    Each year, the global cost that is accounted to corrosion was estimated at $2.5 trillion. Corrosion not only imposes an economic burden, when corroded structures are under various loading conditions, it may also lead to structurally brittle failure, posing a potential threat to structural reliability and service safety. Although considerable studies investigated the combined effect of external loads and structural steel corrosion, many of the current findings on synergetic interaction between stress and corrosion are contrary. In this study, the combined effects of dynamic mechanical loads and corrosion on epoxy coated steel are investigated using the distributed fiber optic sensors based on optical frequency domain reflectometry. Experimental studies were performed using the serpentine-arranged distributed fiber optic strain sensors embedded inside the epoxy with three different scenarios including the impact loading-only, corrosion-only, and combined impact loading-corrosion tests. Test results demonstrated that the distributed fiber optic sensors can locate and detect the corrosion processing paths by measuring the induced strain changes. The combined impact loading-corrosion condition showed significantly accelerated corrosion progression caused by mechanical loads, indicating the significant interaction between dynamic mechanical loading and corrosion on epoxy coated steel. 
    more » « less
  3. Embedded fiber Bragg grating (FBG) sensors are attractive for in-situ structural monitoring, especially in fiber reinforced composites. Their implementation in metallic structures is hindered by the thermal limit of the protective coating, typically a polymer material. The purpose of this study is to demonstrate the embedding of FBG sensors into metals with the ultimate objective of using FBG sensors for structural health monitoring of metallic structures. To that end, ultrasonic additive manufacturing (UAM) is utilized. UAM is a solid-state manufacturing process based on ultrasonic metal welding that allows for layered addition of metallic foils without melting. Embedding FBGs through UAM is shown to result in total cross-sectional encapsulation of the sensors within the metal matrix, which encourages uniform strain transfer. Since the UAM process takes place at essentially room temperature, the industry standard acrylate protective coating can be used rather than requiring a new coating applied to the FBGs prior to embedment. Measurements presented in this paper show that UAM-embedded FBG sensors accurately track strain at temperatures higher than 400 C. The data reveals the conditions under which detrimental wavelength hopping takes place due to non-uniformity of the load transferred to the FBG. Further, optical cross-sectioning of the test specimens shows inhibition of the thermal degradation of the protective coating. It is hypothesized that the lack of an atmosphere around the fully-encapsulated FBGs makes it possible to operate the sensors at temperatures well above what has been possible until now. Embedded FBGs were shown to retain their coatings when subjected to a thermal loading that would result in over 50 percent degradation (by volume and mass) in atmospherically exposed fiber. 
    more » « less
  4. Steel, which has high tension and compression strength, is a widely used civil engineering material in constructing building, bridge, pipelines, and other structures. However, steel has a well-known weakness, which is suspected to corrosion. Steel corrosion would significantly impact the reliability and safety of steel structures. Accurately locating and assessing the corrosion of steel structures would contribute to timely maintenance and thus, extend the service life of the steel structures. Although advances have been made to use nondestructive evaluation (NDE) technologies to locate and assess corrosion on steel structures, due to the lack of labor and budget for frequent NDE assessment on steel structures, remote and real-time approaches to locate and assess corrosion are still in great needs. Fiber optic sensors, especially, fiber Bragg gating (FBG) sensors, with unique advantages of real-time sensing, compactness, immune to EMI and moisture, capability of quasi-distributed sensing, and long life cycle, will be a perfect candidate for long-term corrosion assessment. However, due to the fact that FBG is a localized sensor, it is very challenging to locate corrosion using FBG sensors. In this study, algorithms are developed to locate corrosion on steel structures using FBG sensors. Detail sensing principle, localization algorithm development and calibration are introduced in this paper together with experimental validation testing. Upon validation, the developed corrosion localization algorithm could give some guidance to locate corrosion using in-situ FBG sensors on steel structures across nation and would possibly reduce the corrosion induced tragedies. 
    more » « less
  5. Coatings, either soft or hard, are commonly used to protect steel against corrosion for longer service life. With coatings, assessing the corrosion behavior and status of the substrate is challenging without destructive analysis. In this paper, fiber Bragg (FBG) grating sensors were proposed to nondestructively evaluate the corrosion behavior of steel coated with two popular coatings, including the polymeric and wire arc sprayed Al-Zn coating. Laboratory accelerated corrosion tests demonstrated that the embedded FBG sensors inside both the soft and hard coatings can effectively quantify the corrosion rate, monitor the corrosion progress, and detect the coating damages and crack propagation of coated steel in real time. The laboratory electrochemical corrosion test on the wire arc sprayed Al-Zn coating validated the proposed embedded FBG sensor method with a good agreement in comparison. The proposed sensing platform provides an alternative nondestructive real-time corrosion assessment approach for coated steel in the field. 
    more » « less